7L 2s

Revision as of 14:32, 9 December 2024 by Inthar (talk | contribs) (Proposed Names: Added ground's proposed "ad-" names)
↖ 6L 1s ↑ 7L 1s 8L 1s ↗
← 6L 2s 7L 2s 8L 2s →
↙ 6L 3s ↓ 7L 3s 8L 3s ↘
┌╥╥╥╥┬╥╥╥┬┐
│║║║║│║║║││
│││││││││││
└┴┴┴┴┴┴┴┴┴┘
Scale structure
Step pattern LLLLsLLLs
sLLLsLLLL
Equave 2/1 (1200.0 ¢)
Period 2/1 (1200.0 ¢)
Generator size
Bright 5\9 to 4\7 (666.7 ¢ to 685.7 ¢)
Dark 3\7 to 4\9 (514.3 ¢ to 533.3 ¢)
TAMNAMS information
Name armotonic
Prefix arm-
Abbrev. arm
Related MOS scales
Parent 2L 5s
Sister 2L 7s
Daughters 9L 7s, 7L 9s
Neutralized 5L 4s
2-Flought 16L 2s, 7L 11s
Equal tunings
Equalized (L:s = 1:1) 5\9 (666.7 ¢)
Supersoft (L:s = 4:3) 19\34 (670.6 ¢)
Soft (L:s = 3:2) 14\25 (672.0 ¢)
Semisoft (L:s = 5:3) 23\41 (673.2 ¢)
Basic (L:s = 2:1) 9\16 (675.0 ¢)
Semihard (L:s = 5:2) 22\39 (676.9 ¢)
Hard (L:s = 3:1) 13\23 (678.3 ¢)
Superhard (L:s = 4:1) 17\30 (680.0 ¢)
Collapsed (L:s = 1:0) 4\7 (685.7 ¢)

7L 2s, named armotonic in TAMNAMS, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 7 large steps and 2 small steps, repeating every octave. Generators that produce this scale range from 666.7 ¢ to 685.7 ¢, or from 514.3 ¢ to 533.3 ¢. Scales of this form are strongly associated with Armodue theory, as applied to septimal mavila and Hornbostel temperaments.

Name

The TAMNAMS name for this pattern is armotonic, in reference to Armodue theory. Superdiatonic is also in use.

Intervals

This article assumes TAMNAMS for naming step ratios, mossteps, and mosdegrees.
Intervals of 7L 2s
Intervals Steps
subtended
Range in cents
Generic Specific Abbrev.
0-armstep Perfect 0-armstep P0arms 0 0.0 ¢
1-armstep Minor 1-armstep m1arms s 0.0 ¢ to 133.3 ¢
Major 1-armstep M1arms L 133.3 ¢ to 171.4 ¢
2-armstep Minor 2-armstep m2arms L + s 171.4 ¢ to 266.7 ¢
Major 2-armstep M2arms 2L 266.7 ¢ to 342.9 ¢
3-armstep Minor 3-armstep m3arms 2L + s 342.9 ¢ to 400.0 ¢
Major 3-armstep M3arms 3L 400.0 ¢ to 514.3 ¢
4-armstep Perfect 4-armstep P4arms 3L + s 514.3 ¢ to 533.3 ¢
Augmented 4-armstep A4arms 4L 533.3 ¢ to 685.7 ¢
5-armstep Diminished 5-armstep d5arms 3L + 2s 514.3 ¢ to 666.7 ¢
Perfect 5-armstep P5arms 4L + s 666.7 ¢ to 685.7 ¢
6-armstep Minor 6-armstep m6arms 4L + 2s 685.7 ¢ to 800.0 ¢
Major 6-armstep M6arms 5L + s 800.0 ¢ to 857.1 ¢
7-armstep Minor 7-armstep m7arms 5L + 2s 857.1 ¢ to 933.3 ¢
Major 7-armstep M7arms 6L + s 933.3 ¢ to 1028.6 ¢
8-armstep Minor 8-armstep m8arms 6L + 2s 1028.6 ¢ to 1066.7 ¢
Major 8-armstep M8arms 7L + s 1066.7 ¢ to 1200.0 ¢
9-armstep Perfect 9-armstep P9arms 7L + 2s 1200.0 ¢

Note names

7L 2s, when viewed under Armodue theory, can be notated using Armodue notation.

Theory

Temperament interpretations

Mavila is an important harmonic entropy minimum here, insofar as 678¢ can be considered a fifth. Other temperaments include septimal mavila and Hornbostel.

Modes

Scale degrees of the modes of 7L 2s
UDP Cyclic
order
Step
pattern
Scale degree (armdegree)
0 1 2 3 4 5 6 7 8 9
8|0 1 LLLLsLLLs Perf. Maj. Maj. Maj. Aug. Perf. Maj. Maj. Maj. Perf.
7|1 6 LLLsLLLLs Perf. Maj. Maj. Maj. Perf. Perf. Maj. Maj. Maj. Perf.
6|2 2 LLLsLLLsL Perf. Maj. Maj. Maj. Perf. Perf. Maj. Maj. Min. Perf.
5|3 7 LLsLLLLsL Perf. Maj. Maj. Min. Perf. Perf. Maj. Maj. Min. Perf.
4|4 3 LLsLLLsLL Perf. Maj. Maj. Min. Perf. Perf. Maj. Min. Min. Perf.
3|5 8 LsLLLLsLL Perf. Maj. Min. Min. Perf. Perf. Maj. Min. Min. Perf.
2|6 4 LsLLLsLLL Perf. Maj. Min. Min. Perf. Perf. Min. Min. Min. Perf.
1|7 9 sLLLLsLLL Perf. Min. Min. Min. Perf. Perf. Min. Min. Min. Perf.
0|8 5 sLLLsLLLL Perf. Min. Min. Min. Perf. Dim. Min. Min. Min. Perf.

Proposed mode names

The Ad- mode names are proposed by groundfault. This naming has the feature of matching up the middle 7 modes with the antidiatonic mode names in the generator arc.

Modes of 7L 2s
UDP Cyclic
order
Step
pattern
8|0 1 LLLLsLLLs
7|1 6 LLLsLLLLs
6|2 2 LLLsLLLsL
5|3 7 LLsLLLLsL
4|4 3 LLsLLLsLL
3|5 8 LsLLLLsLL
2|6 4 LsLLLsLLL
1|7 9 sLLLLsLLL
0|8 5 sLLLsLLLL

Scale tree

Template:Scale tree