55edo

From Xenharmonic Wiki
Jump to navigation Jump to search

55edo divides the octave into 55 parts of 21.818 cents. It can be used for a meantone tuning, and is close to 1/6 comma meantone (and is almost exactly 10/57 comma meantone.) Telemann suggested it as a theoretical basis for analyzing the intervals of meantone, in which he was followed by Leopold and Wolfgang Mozart. It can also be used for mohajira and liese temperaments.

5-limit commas: 81/80, <31 1 -14|, <-165 220 55|

7-limit commas: 31104/30625, 6144/6125, 81648/78125, 16128/15625, 28672/28125, 33075/32768, 83349/80000, 1029/1000, 686/675, 10976/10935, 16807/16384, 84035/82944

11-limit commas: 59049/58564, 74088/73205, 46656/46585, 21609/21296, 12005/11979, 19683/19360, 243/242, 3087/3025, 5488/5445, 19683/19250, 1944/1925, 45927/45056, 2835/2816, 35721/34375, 7056/6875, 12544/12375, 7203/7040, 2401/2376, 24057/24010, 72171/70000, 891/875, 176/175, 2079/2048, 385/384, 3234/3125, 17248/16875, 26411/25600, 26411/2592, 26411/262404, 88209/87808, 30976/30625, 3267/3200, 121/120, 81312/78125, 41503/40000, 41503/40500, 35937/35000, 2662/2625, 42592/42525, 83853/81920, 9317/9216, 65219/62500, 43923/43904, 14641/14400, 14641/14580

13-limit commas: 59535/57122, 29400/28561, 29568/28561, 29645/28561, 24576/24167, 99225/96668, 24500/24167, 50421/48334, 45927/43940, 2268/2197, 2240/2197, 57624/54925, 61875/61516, 57024/54925, 11264/10985, 72765/70304, 13475/13182, 22869/21970, 6776/6591, 20736/20449, 20480/20449, 84035/81796, 91125/91091, 65536/65065, 15309/14872, 1890/1859, 5600/5577, 9604/9295, 59049/57967, 58320/57967, 4374/4225, 864/845, 512/507, 11025/10816, 6125/6084, 21952/21125, 16807/16224, 84035/82134, 66825/66248, 90112/88725, 56133/54080, 693/676, 1540/1521, 26411/25350, 58806/57967, 58080/57967, 88209/84500, 4356/4225, 7744/7605, 88935/86528, 33275/33124, 27951/27040, 9317/9126, 58564/57967, 43923/42250, 17496/17303, 87808/86515, 55296/55055, 25515/25168, 1575/1573, 64827/62920, 4802/4719, 98415/98098, 59049/57200, 729/715, 144/143, 18375/18304, 18522/17875, 10976/10725, 84035/82368, 59049/56875, 11664/11375, 2304/2275, 4096/4095, 1701/1664, 105/104, 42336/40625, 25088/24375, 21609/20800, 2401/2340, 9604/9477, 72171/71344, 2673/2600, 66/65, 352/351, 13475/13312, 33957/32500, 15092/14625, 81675/81536, 58806/56875, 11616/11375, 61952/61425, 68607/66560, 847/832, 4235/4212, 35937/35672, 1331/1300, 5324/5265, 58564/56875, 85293/85184, 13377/13310, 85293/84700, 15288/15125, 31213/30976, 67392/67375, 28431/28160, 34944/34375, 4459/4400, 4459/4455, 28431/28000, 351/350, 79872/78125, 66339/65536, 51597/50000, 637/625, 10192/10125, 31213/30720, 31213/31104, 30888/30625, 1287/1280, 81081/78125, 16016/15625, 49049/48000, 49049/48600, 14157/14000, 33033/32768, 77077/75000, 51909/51200, 17303/17280, 75712/75625, 8281/8250, 41067/40960, 31941/31250, 9464/9375, 57967/57600, 91091/90000, 61347/61250, 79092/78125

Intervals

Degrees of 55-EDO Cents value Ratios it approximates
0 0.000 1/1
1 21.818 128/125, 64/63, 65/64, 78/77, 91/90, 99/98, 81/80
2 43.636 36/35
3 65.4545 28/27, 25/24
4 87.273 25/24, 21/20
5 109.091 16/15
6 130.909 14/13, 13/12
7 152.727 13/12, 12/11
8 174.5455 11/10, 10/9
9 196.364 9/8, 10/9
10 218.182 17/15
11 240 8/7, 15/13
12 261.818 7/6
13 283.636 13/11
14 305.4545 6/5-
15 327.273 6/5+
16 349.091 11/9, 27/22
17 370.909 16/13
18 392.727 5/4
19 414.5455 14/11
20 436.364 9/7
21 458.182 13/10
22 480 21/16
23 501.818 4/3, 27/20
24 523.636 27/20
25 545.4545 11/8
26 567.273 18/13, 25/18
27 589.091 7/5
28 610.909 10/7
29 632.727 13/9, 36/25
30 654.5455 16/11
31 676.364 40/27
32 698.182 3/2, 40/27
33 720 32/21
34 741.818 20/13
35 763.636 14/9
36 785.4545 11/7
37 807.273 8/5
38 829.091 13/8
39 850.909 18/11, 44/27
40 872.727 5/3-
41 894.5455 5/3+
42 916.364 22/13
43 938.182 12/7
44 960 7/4, 26/15
45 981.818 30/17
46 1003.636 16/9, 9/5
47 1025.4545 9/5, 20/11
48 1047.273 11/6, 24/13
49 1069.091 24/13, 13/7
50 1090.909 15/8
51 1112.727 40/21, 48/25
52 1134.5455 56/27, 48/25
53 1156.364 35/18
54 1178.182 125/64, 63/32, 128/65, 77/39, 180/91, 196/99, 160/81
55 1200 2/1

Best theoretical mapping, even if inconsistent

The following table shows how some prominent just intervals are represented in 55edo (ordered by absolute error).

Interval, complement Error (abs., in cents)
9/7, 14/9 1.280
11/9, 18/11 1.683
12/11, 11/6 2.090
14/13, 13/7 2.611
16/15, 15/8 2.640
14/11, 11/7 2.963
4/3, 3/2 3.773
18/13, 13/9 3.890
13/10, 20/13 3.968
7/6, 12/7 5.053
13/11, 22/13 5.573
11/8, 16/11 5.863
5/4, 8/5 6.414
7/5, 10/7 6.579
9/8, 16/9 7.546
13/12, 24/13 7.664
15/13, 26/15 7.741
10/9, 9/5 7.858
15/11, 22/15 8.504
8/7, 7/4 8.826
11/10, 20/11 9.541
6/5, 5/3 10.187
15/14, 28/15 10.352
16/13, 13/8 10.381

Mozart - Adagio in B minor KV 540 by Carlo Serafini (blog entry)

"Mozart's tuning: 55edo" (containing another listening example) in the tonalsoft encyclopedia

Selected just intervals by error

The following table shows how some prominent just intervals are represented in 55edo (ordered by absolute error).

Interval, complement Error (abs., in cents)
9/7, 14/9 1.280
11/9, 18/11 1.683
12/11, 11/6 2.090
16/15, 15/8 2.640
14/11, 11/7 2.963
4/3, 3/2 3.773
13/10, 20/13 3.968
7/6, 12/7 5.053
11/8, 16/11 5.863
5/4, 8/5 6.414
9/8, 16/9 7.546
15/13, 26/15 7.741
15/11, 22/15 8.504
8/7, 7/4 8.826
6/5, 5/3 10.187
16/13, 13/8 10.381
15/14, 28/15 11.466
11/10, 20/11 12.277
10/9, 9/5 13.960
13/12, 24/13 14.155
7/5, 10/7 15.239
13/11, 22/13 16.245
18/13, 13/9 17.928
14/13, 13/7 19.207

Mozart - Adagio in B minor KV 540 by Carlo Serafini (blog entry)

"Mozart's tuning: 55edo" (containing another listening example) in the tonalsoft encyclopedia