54edt

From Xenharmonic Wiki
Revision as of 05:07, 19 January 2019 by Xenllium (talk | contribs)
Jump to navigation Jump to search

Division of the third harmonic into 54 equal parts (54edt) is related to 34 edo, but with the 3/1 rather than the 2/1 being just. The octave is about 2.4728 cents compressed and the step size is about 35.2214 cents. It is consistent to the 7-integer-limit, but not to the 8-integer-limit. In comparison, 34edo is only consistent up to the 6-integer-limit.

degree cents value corresponding
JI intervals
comments
0 0.0000 exact 1/1
1 35.2214 50/49, 49/48
2 70.4428 25/24
3 105.6642 17/16
4 140.8856
5 176.1069
6 211.3283 26/23
7 246.5497 15/13
8 281.7711 20/17
9 316.9925 pseudo-6/5
10 352.2139
11 387.4353 5/4
12 422.6567 60/47
13 457.8781 99/76
14 493.0994 117/88 pseudo-4/3
15 528.3208 19/14
16 563.5422 18/13
17 598.7636 41/29, 140/99
18 633.9850
19 669.2064
20 704.4278 pseudo-3/2
21 739.6492
22 774.8706 36/23
23 810.0919 pseudo-8/5
24 845.3133 44/27
25 880.5347 pseudo-5/3
26 915.7561
27 950.9775
28 986.1989
29 1021.4203 pseudo-9/5
30 1056.6417 81/44
31 1091.8631
32 1127.0844 23/12
33 1162.3058
34 1197.5272 pseudo-2/1
35 1232.7486
36 1267.9700
37 1303.1914
38 1338.4128 13/6
39 1373.6342 42/19
40 1408.8556 88/39
41 1444.0769 76/33
42 1479.2983 47/20
43 1514.5197 12/5
44 1549.7411
45 1584.9625 pseudo-5/2
46 1620.1839 51/20
47 1655.4053 13/5
48 1690.6267 69/26
49 1725.8481
50 1761.0694
51 1796.2908 48/17
52 1831.5122 72/25
53 1866.7336 50/17
54 1901.9550 exact 3/1 just perfect fifth plus an octave