79edo

From Xenharmonic Wiki
Revision as of 14:14, 3 November 2023 by Stavats (talk | contribs) (Theory: Fixed typo)
Jump to navigation Jump to search
← 78edo 79edo 80edo →
Prime factorization 79 (prime)
Step size 15.1899 ¢ 
Fifth 46\79 (698.734 ¢)
Semitones (A1:m2) 6:7 (91.14 ¢ : 106.3 ¢)
Consistency limit 5
Distinct consistency limit 5

Template:EDO intro

Theory

Approximation of odd harmonics in 79edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -3.22 -6.57 +3.33 -6.44 -4.48 -5.08 +5.40 +1.37 +6.28 +0.11 -5.49
Relative (%) -21.2 -43.2 +21.9 -42.4 -29.5 -33.5 +35.6 +9.0 +41.4 +0.7 -36.1
Steps
(reduced)
125
(46)
183
(25)
222
(64)
250
(13)
273
(36)
292
(55)
309
(72)
323
(7)
336
(20)
347
(31)
357
(41)

It tempers out 3125/3072 in the 5-limit, 4000/3969, 1728/1715 and 4375/4374 in the 7-limit, 99/98, 1331/1323, 243/242, 385/384 and 4000/3993 in the 11-limit, and 275/273, 169/168, 640/637, 1188/1183, 325/324, 351/350, 1575/1573, 2080/2079 and 2200/2197 in the 13-limit. It provides the optimal patent val for sentinel temperament. 79 is the 22nd prime EDO number.

79edo adequately represents the way of playing where a tone is considered to be 10/9 instead of 9/8. In 12edo and meantones close to it used predominantly in Western music, when the difference between 10/9 and 9/8 is tempered out, what really happens is that the 9/8 only note is used, and 10/9 is raised to be equal to 9/8. 79edo misses 9/8 while having a near-perfect representation of 10/9 as 12\79. A maximum evenness variant of such scale can be generated by naively stacking 6 12edo diatonic majors and 1 Lydian tetrachord. Since the final tetrachord doesn't have a 2nd degree, this results in 6 II's stretched over 6+7/12 octaves, which is just enough to make the log2 of the number to be equal to 10/9. From a regular temperament theory perspective, these scales are a part of the bluebirds temperament.

Interval table

Steps Cents Approximate ratios Ups and downs notation
0 0 1/1 D
1 15.2 ^D, E♭♭
2 30.4 ^^D, ^E♭♭
3 45.6 36/35, 38/37 ^3D, ^^E♭♭
4 60.8 29/28 vvD♯, v3E♭
5 75.9 23/22, 24/23 vD♯, vvE♭
6 91.1 D♯, vE♭
7 106.3 17/16, 33/31 ^D♯, E♭
8 121.5 ^^D♯, ^E♭
9 136.7 13/12 ^3D♯, ^^E♭
10 151.9 12/11, 35/32 vvD𝄪, v3E
11 167.1 11/10 vD𝄪, vvE
12 182.3 10/9 D𝄪, vE
13 197.5 E
14 212.7 26/23, 35/31 ^E, F♭
15 227.8 ^^E, ^F♭
16 243 23/20 ^3E, ^^F♭
17 258.2 36/31 vvE♯, v3F
18 273.4 34/29 vE♯, vvF
19 288.6 13/11 E♯, vF
20 303.8 31/26 F
21 319 ^F, G♭♭
22 334.2 17/14 ^^F, ^G♭♭
23 349.4 11/9 ^3F, ^^G♭♭
24 364.6 21/17 vvF♯, v3G♭
25 379.7 vF♯, vvG♭
26 394.9 39/31 F♯, vG♭
27 410.1 33/26 ^F♯, G♭
28 425.3 23/18 ^^F♯, ^G♭
29 440.5 31/24 ^3F♯, ^^G♭
30 455.7 13/10 vvF𝄪, v3G
31 470.9 21/16, 38/29 vF𝄪, vvG
32 486.1 F𝄪, vG
33 501.3 4/3 G
34 516.5 27/20, 31/23, 35/26 ^G, A♭♭
35 531.6 19/14 ^^G, ^A♭♭
36 546.8 ^3G, ^^A♭♭
37 562 18/13, 29/21 vvG♯, v3A♭
38 577.2 vG♯, vvA♭
39 592.4 31/22 G♯, vA♭
40 607.6 ^G♯, A♭
41 622.8 33/23 ^^G♯, ^A♭
42 638 13/9 ^3G♯, ^^A♭
43 653.2 35/24 vvG𝄪, v3A
44 668.4 28/19 vG𝄪, vvA
45 683.5 G𝄪, vA
46 698.7 3/2 A
47 713.9 ^A, B♭♭
48 729.1 29/19, 32/21, 35/23 ^^A, ^B♭♭
49 744.3 20/13 ^3A, ^^B♭♭
50 759.5 31/20 vvA♯, v3B♭
51 774.7 36/23 vA♯, vvB♭
52 789.9 A♯, vB♭
53 805.1 35/22 ^A♯, B♭
54 820.3 ^^A♯, ^B♭
55 835.4 34/21 ^3A♯, ^^B♭
56 850.6 18/11 vvA𝄪, v3B
57 865.8 28/17, 33/20 vA𝄪, vvB
58 881 A𝄪, vB
59 896.2 B
60 911.4 22/13, 39/23 ^B, C♭
61 926.6 29/17 ^^B, ^C♭
62 941.8 31/18 ^3B, ^^C♭
63 957 vvB♯, v3C
64 972.2 vB♯, vvC
65 987.3 23/13 B♯, vC
66 1002.5 C
67 1017.7 9/5 ^C, D♭♭
68 1032.9 20/11 ^^C, ^D♭♭
69 1048.1 11/6 ^3C, ^^D♭♭
70 1063.3 24/13 vvC♯, v3D♭
71 1078.5 vC♯, vvD♭
72 1093.7 32/17 C♯, vD♭
73 1108.9 ^C♯, D♭
74 1124.1 23/12 ^^C♯, ^D♭
75 1139.2 ^3C♯, ^^D♭
76 1154.4 35/18, 37/19, 39/20 vvC𝄪, v3D
77 1169.6 vC𝄪, vvD
78 1184.8 C𝄪, vD
79 1200 2/1 D

Scales

  • Bluebirds[7] - also glacial
  • Bluebirds[46]

Music

Francium
Silence and Secrecy (Julian Malerman)