64edo

From Xenharmonic Wiki
Revision as of 14:01, 2 April 2023 by Francium (talk | contribs) (Theory)
Jump to navigation Jump to search
← 63edo 64edo 65edo →
Prime factorization 26
Step size 18.75 ¢ 
Fifth 37\64 (693.75 ¢)
Semitones (A1:m2) 3:7 (56.25 ¢ : 131.3 ¢)
Dual sharp fifth 38\64 (712.5 ¢) (→ 19\32)
Dual flat fifth 37\64 (693.75 ¢)
Dual major 2nd 11\64 (206.25 ¢)
Consistency limit 3
Distinct consistency limit 3

64 equal divisions of the octave (64edo) is the tuning system that divides the octave into 64 equal parts of exactly 18.75 ¢ each.

Theory

Approximation of odd harmonics in 64edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -8.21 +7.44 +6.17 +2.34 -7.57 +3.22 -0.77 +7.54 +2.49 -2.03 +9.23
Relative (%) -43.8 +39.7 +32.9 +12.5 -40.4 +17.2 -4.1 +40.2 +13.3 -10.8 +49.2
Steps
(reduced)
101
(37)
149
(21)
180
(52)
203
(11)
221
(29)
237
(45)
250
(58)
262
(6)
272
(16)
281
(25)
290
(34)

The patent val tempers out 648/625 in the 5-limit and 25/224 in the 7-limit, plus 66/65, 121/120 and 441/440 in the 11-limit and 144/143 in the 13-limit. It provides the optimal patent val in the 7-, 11- and 13-limits for the 16&64 temperament, which would perhaps be of more interest if it was lower in badness.

Intervals

# Cents
0 0.00
1 18.75
2 37.50
3 56.25
4 75.00
5 93.75
6 112.50
7 131.25
8 150.00
9 168.75
10 187.50
11 206.25
12 225.00
13 243.75
14 262.50
15 281.25
16 300.00
17 318.75
18 337.50
19 356.25
20 375.00
21 393.75
22 412.50
23 431.25
24 450.00
25 468.75
26 487.50
27 506.25
28 525.00
29 543.75
30 562.50
31 581.25
32 600.00
33 618.75
34 637.50
35 656.25
36 675.00
37 693.75
38 712.50
39 731.25
40 750.00
41 768.75
42 787.50
43 806.25
44 825.00
45 843.75
46 862.50
47 881.25
48 900.00
49 918.75
50 937.50
51 956.25
52 975.00
53 993.75
54 1012.50
55 1031.25
56 1050.00
57 1068.75
58 1087.50
59 1106.25
60 1125.00
61 1143.75
62 1162.50
63 1181.25
64 1200.00