55edo
55edo divides the octave into 55 parts of 21.818 cents. It can be used for a meantone tuning, and is close to 1/6 comma meantone (and is almost exactly 10/57 comma meantone.) Telemann suggested it as a theoretical basis for analyzing the intervals of meantone, in which he was followed by Leopold and Wolfgang Mozart. It can also be used for mohajira and liese temperaments.
5-limit commas: 81/80, <31 1 -14|, <-165 220 55|
7-limit commas: 31104/30625, 6144/6125, 81648/78125, 16128/15625, 28672/28125, 33075/32768, 83349/80000, 1029/1000, 686/675, 10976/10935, 16807/16384, 84035/82944
11-limit commas: 59049/58564, 74088/73205, 46656/46585, 21609/21296, 12005/11979, 19683/19360, 243/242, 3087/3025, 5488/5445, 19683/19250, 1944/1925, 45927/45056, 2835/2816, 35721/34375, 7056/6875, 12544/12375, 7203/7040, 2401/2376, 24057/24010, 72171/70000, 891/875, 176/175, 2079/2048, 385/384, 3234/3125, 17248/16875, 26411/25600, 26411/2592, 26411/262404, 88209/87808, 30976/30625, 3267/3200, 121/120, 81312/78125, 41503/40000, 41503/40500, 35937/35000, 2662/2625, 42592/42525, 83853/81920, 9317/9216, 65219/62500, 43923/43904, 14641/14400, 14641/14580
13-limit commas: 59535/57122, 29400/28561, 29568/28561, 29645/28561, 24576/24167, 99225/96668, 24500/24167, 50421/48334, 45927/43940, 2268/2197, 2240/2197, 57624/54925, 61875/61516, 57024/54925, 11264/10985, 72765/70304, 13475/13182, 22869/21970, 6776/6591, 20736/20449, 20480/20449, 84035/81796, 91125/91091, 65536/65065, 15309/14872, 1890/1859, 5600/5577, 9604/9295, 59049/57967, 58320/57967, 4374/4225, 864/845, 512/507, 11025/10816, 6125/6084, 21952/21125, 16807/16224, 84035/82134, 66825/66248, 90112/88725, 56133/54080, 693/676, 1540/1521, 26411/25350, 58806/57967, 58080/57967, 88209/84500, 4356/4225, 7744/7605, 88935/86528, 33275/33124, 27951/27040, 9317/9126, 58564/57967, 43923/42250, 17496/17303, 87808/86515, 55296/55055, 25515/25168, 1575/1573, 64827/62920, 4802/4719, 98415/98098, 59049/57200, 729/715, 144/143, 18375/18304, 18522/17875, 10976/10725, 84035/82368, 59049/56875, 11664/11375, 2304/2275, 4096/4095, 1701/1664, 105/104, 42336/40625, 25088/24375, 21609/20800, 2401/2340, 9604/9477, 72171/71344, 2673/2600, 66/65, 352/351, 13475/13312, 33957/32500, 15092/14625, 81675/81536, 58806/56875, 11616/11375, 61952/61425, 68607/66560, 847/832, 4235/4212, 35937/35672, 1331/1300, 5324/5265, 58564/56875, 85293/85184, 13377/13310, 85293/84700, 15288/15125, 31213/30976, 67392/67375, 28431/28160, 34944/34375, 4459/4400, 4459/4455, 28431/28000, 351/350, 79872/78125, 66339/65536, 51597/50000, 637/625, 10192/10125, 31213/30720, 31213/31104, 30888/30625, 1287/1280, 81081/78125, 16016/15625, 49049/48000, 49049/48600, 14157/14000, 33033/32768, 77077/75000, 51909/51200, 17303/17280, 75712/75625, 8281/8250, 41067/40960, 31941/31250, 9464/9375, 57967/57600, 91091/90000, 61347/61250, 79092/78125
Intervals
Degrees of 55-EDO | Cents value | Ratios it approximates |
0 | 0.000 | 1/1 |
1 | 21.818 | 128/125, 64/63, 65/64, 78/77, 91/90, 99/98, 81/80 |
2 | 43.636 | 36/35 |
3 | 65.4545 | 28/27, 25/24 |
4 | 87.273 | 25/24, 21/20 |
5 | 109.091 | 16/15 |
6 | 130.909 | 14/13, 13/12 |
7 | 152.727 | 13/12, 12/11 |
8 | 174.5455 | 11/10, 10/9 |
9 | 196.364 | 9/8, 10/9 |
10 | 218.182 | 17/15 |
11 | 240 | 8/7, 15/13 |
12 | 261.818 | 7/6 |
13 | 283.636 | 13/11 |
14 | 305.4545 | 6/5- |
15 | 327.273 | 6/5+ |
16 | 349.091 | 11/9, 27/22 |
17 | 370.909 | 16/13 |
18 | 392.727 | 5/4 |
19 | 414.5455 | 14/11 |
20 | 436.364 | 9/7 |
21 | 458.182 | 13/10 |
22 | 480 | 21/16 |
23 | 501.818 | 4/3, 27/20 |
24 | 523.636 | 27/20 |
25 | 545.4545 | 11/8 |
26 | 567.273 | 18/13, 25/18 |
27 | 589.091 | 7/5 |
28 | 610.909 | 10/7 |
29 | 632.727 | 13/9, 36/25 |
30 | 654.5455 | 16/11 |
31 | 676.364 | 40/27 |
32 | 698.182 | 3/2, 40/27 |
33 | 720 | 32/21 |
34 | 741.818 | 20/13 |
35 | 763.636 | 14/9 |
36 | 785.4545 | 11/7 |
37 | 807.273 | 8/5 |
38 | 829.091 | 13/8 |
39 | 850.909 | 18/11, 44/27 |
40 | 872.727 | 5/3- |
41 | 894.5455 | 5/3+ |
42 | 916.364 | 22/13 |
43 | 938.182 | 12/7 |
44 | 960 | 7/4, 26/15 |
45 | 981.818 | 30/17 |
46 | 1003.636 | 16/9, 9/5 |
47 | 1025.4545 | 9/5, 20/11 |
48 | 1047.273 | 11/6, 24/13 |
49 | 1069.091 | 24/13, 13/7 |
50 | 1090.909 | 15/8 |
51 | 1112.727 | 40/21, 48/25 |
52 | 1134.5455 | 56/27, 48/25 |
53 | 1156.364 | 35/18 |
54 | 1178.182 | 125/64, 63/32, 128/65, 77/39, 180/91, 196/99, 160/81 |
55 | 1200 | 2/1 |
Best theoretical mapping, even if inconsistent
The following table shows how some prominent just intervals are represented in 55edo (ordered by absolute error).
Interval, complement | Error (abs., in cents) |
---|---|
9/7, 14/9 | 1.280 |
11/9, 18/11 | 1.683 |
12/11, 11/6 | 2.090 |
14/13, 13/7 | 2.611 |
16/15, 15/8 | 2.640 |
14/11, 11/7 | 2.963 |
4/3, 3/2 | 3.773 |
18/13, 13/9 | 3.890 |
13/10, 20/13 | 3.968 |
7/6, 12/7 | 5.053 |
13/11, 22/13 | 5.573 |
11/8, 16/11 | 5.863 |
5/4, 8/5 | 6.414 |
7/5, 10/7 | 6.579 |
9/8, 16/9 | 7.546 |
13/12, 24/13 | 7.664 |
15/13, 26/15 | 7.741 |
10/9, 9/5 | 7.858 |
15/11, 22/15 | 8.504 |
8/7, 7/4 | 8.826 |
11/10, 20/11 | 9.541 |
6/5, 5/3 | 10.187 |
15/14, 28/15 | 10.352 |
16/13, 13/8 | 10.381 |
Mozart - Adagio in B minor KV 540 by Carlo Serafini (blog entry)
"Mozart's tuning: 55edo" (containing another listening example) in the tonalsoft encyclopedia
Selected just intervals by error
The following table shows how some prominent just intervals are represented in 55edo (ordered by absolute error).
Interval, complement | Error (abs., in cents) |
---|---|
9/7, 14/9 | 1.280 |
11/9, 18/11 | 1.683 |
12/11, 11/6 | 2.090 |
16/15, 15/8 | 2.640 |
14/11, 11/7 | 2.963 |
4/3, 3/2 | 3.773 |
13/10, 20/13 | 3.968 |
7/6, 12/7 | 5.053 |
11/8, 16/11 | 5.863 |
5/4, 8/5 | 6.414 |
9/8, 16/9 | 7.546 |
15/13, 26/15 | 7.741 |
15/11, 22/15 | 8.504 |
8/7, 7/4 | 8.826 |
6/5, 5/3 | 10.187 |
16/13, 13/8 | 10.381 |
15/14, 28/15 | 11.466 |
11/10, 20/11 | 12.277 |
10/9, 9/5 | 13.960 |
13/12, 24/13 | 14.155 |
7/5, 10/7 | 15.239 |
13/11, 22/13 | 16.245 |
18/13, 13/9 | 17.928 |
14/13, 13/7 | 19.207 |
Mozart - Adagio in B minor KV 540 by Carlo Serafini (blog entry)
"Mozart's tuning: 55edo" (containing another listening example) in the tonalsoft encyclopedia