← 61edo 62edo 63edo →
Prime factorization 2 × 31
Step size 19.3548 ¢ 
Fifth 36\62 (696.774 ¢) (→ 18\31)
Semitones (A1:m2) 4:6 (77.42 ¢ : 116.1 ¢)
Consistency limit 7
Distinct consistency limit 7

Template:EDO intro

Theory

62 = 2 × 31 and the patent val of 62edo is a contorted 31edo through the 11-limit, but it makes for a good tuning in the higher limits. In the 13-limit it tempers out 169/168, 1188/1183, 847/845 and 676/675; in the 17-limit 221/220, 273/272, and 289/288; in the 19-limit 153/152, 171/170, 209/208, 286/285, and 361/360. Unlike 31edo, which has a sharp profile for primes 13, 17, 19 and 23, 62edo has a flat profile for these, as it removes the distinction of otonal and utonal superparticular pairs of the primes (e.g. 13/12 vs 14/13 for prime 13) by tempering out the corresponding square-particulars. This flat tendency extends to higher primes too, as the first prime harmonic that is tuned sharper than its 5/4 is its 59/32. Interestingly, the relative size differences of consecutive harmonics are well preserved for all first 24 harmonics, and 62edo is one of the few meantone edos that achieve this, great for those who seek higher-limit meantone harmony.

It provides the optimal patent val for gallium, semivalentine and hemimeantone temperaments.

Using the 35\62 generator, which leads to the 62 97 143 173] val, 62edo is also an excellent tuning for septimal mavila temperament; alternatively 62 97 143 172] supports hornbostel.

Odd harmonics

Approximation of odd harmonics in 62edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -5.18 +0.78 -1.08 +8.99 -9.38 -8.27 -4.40 -8.18 -7.19 -6.26 -8.92
Relative (%) -26.8 +4.0 -5.6 +46.5 -48.5 -42.7 -22.7 -42.3 -37.2 -32.4 -46.1
Steps
(reduced)
98
(36)
144
(20)
174
(50)
197
(11)
214
(28)
229
(43)
242
(56)
253
(5)
263
(15)
272
(24)
280
(32)

Subsets and supersets

Since 62 factors into 2 × 31, 62edo does not contain nontrivial subset edos other than 2edo and 31edo. 186edo and 248edo are notable supersets.

Miscellaneous properties

62 years is the amount of years in a leap week calendar cycle which corresponds to a year of 365 days 5 hours 48 minutes 23 seconds, meaning it is both a simple cycle for a calendar, and 62 being a multiple of 31 makes it a harmonically useful and playable cycle. The corresponding maximal evenness scales are 15 & 62 and 11 & 62.

The 11 & 62 temperament in the 2.9.7 subgroup tempers out 44957696/43046721, and the three generators of 17\62 correspond to 16/9. It is possible to extend this to the 11-limit with comma basis {896/891, 1331/1296}, where 17\62 is mapped to 11/9 and two of them make 16/11. In addition, three generators make the patent val 9/8, which is also created by combining the flat patent val fifth from 31edo with the sharp 37\62 fifth.

The 15 & 62 temperament, corresponding to the leap day cycle, is an unnamed extension to valentine in the 13-limit.

Intervals

Steps Cents Approximate ratios* Ups and downs notation
0 0.00 1/1 D
1 19.35 65/64, 66/65, 78/77, 91/90, 105/104 ^D, vE♭♭
2 38.71 33/32, 36/35, 45/44, 49/48, 50/49, 55/54, 56/55, 64/63 ^^D, E♭♭
3 58.06 26/25, 27/26 vD♯, ^E♭♭
4 77.42 21/20, 22/21, 23/22, 24/23, 25/24, 28/27 D♯, vvE♭
5 96.77 17/16, 18/17, 19/18, 20/19 ^D♯, vE♭
6 116.13 15/14, 16/15 ^^D♯, E♭
7 135.48 13/12, 14/13 vD𝄪, ^E♭
8 154.84 11/10, 12/11, 23/21 D𝄪, vvE
9 174.19 21/19 ^D𝄪, vE
10 193.55 9/8, 10/9, 19/17, 28/25 E
11 212.90 17/15 ^E, vF♭
12 232.26 8/7 ^^E, F♭
13 251.61 15/13, 22/19 vE♯, ^F♭
14 270.97 7/6 E♯, vvF
15 290.32 13/11, 19/16, 20/17 ^E♯, vF
16 309.68 6/5 F
17 329.03 17/14, 23/19 ^^F, G♭♭
18 348.39 11/9, 27/22, 28/23 ^^F, G♭♭
19 367.74 16/13, 21/17, 26/21 vF♯, ^G♭♭
20 387.10 5/4 F♯, vvG♭
21 406.45 19/15, 24/19 ^F♯, vG♭
22 425.81 9/7, 14/11, 23/18, 32/25 ^^F♯, G♭
23 445.16 13/10, 22/17 vF𝄪, ^G♭
24 464.52 17/13, 21/16, 30/23 F𝄪, vvG
25 483.87 25/19 ^F𝄪, vG
26 503.23 4/3 G
27 522.58 19/14, 23/17 ^G, vA♭♭
28 541.94 11/8, 15/11, 26/19 ^^G, A♭♭
29 561.29 18/13 vG♯, ^A♭♭
30 580.65 7/5, 25/18, 32/23 G♯, vvA♭
31 600.00 17/12, 24/17 E
32 619.35 10/7, 23/16, 36/25 ^^G♯, A♭
33 638.71 13/9 vG𝄪, ^A♭
34 658.06 16/11, 19/13, 22/15 G𝄪, vvA
35 677.42 28/19, 34/23 ^G𝄪, vA
36 696.77 3/2 A
37 716.13 38/25 ^A, vB♭♭
38 735.48 23/15, 26/17, 32/21 ^^A, B♭♭
39 754.84 17/11, 20/13 vA♯, ^B♭♭
40 774.19 11/7, 14/9, 25/16, 36/23 A♯, vvB♭
41 793.55 19/12, 30/19 ^A♯, vB♭
42 812.90 8/5 ^^A♯, B♭
43 832.26 13/8, 21/13, 34/21 vA𝄪, ^B♭
44 851.61 18/11, 23/14, 44/27 A𝄪, vvB
45 870.97 28/17, 38/23 ^A𝄪, vB
46 890.32 5/3 B
47 909.68 17/10, 22/13, 32/19 ^B, vC♭
48 929.03 12/7 ^^B, C♭
49 948.39 19/11, 26/15 vB♯, ^C♭
50 967.74 7/4 B♯, vvC
51 987.10 30/17 ^B♯, vC
52 1006.45 9/5, 16/9, 25/14, 34/19 C
53 1025.81 38/21 ^C, vD♭♭
54 1045.16 11/6, 20/11, 42/23 ^^C, D♭♭
55 1064.52 13/7, 24/13 vC♯, ^D♭♭
56 1083.87 15/8, 28/15 C♯, vvD♭
57 1103.23 17/9, 19/10, 32/17, 36/19 ^C♯, vD♭
58 1122.58 21/11, 23/12, 27/14, 40/21, 44/23, 48/25 ^^C♯, D♭
59 1141.94 25/13, 52/27 vC𝄪, ^D♭
60 1161.29 35/18, 49/25, 55/28, 63/32, 64/33, 88/45, 96/49, 108/55 C𝄪, vvD
61 1180.65 65/33, 77/39, 128/65, 180/91, 208/105 ^C𝄪, vD
62 1200.00 2/1 D

* 23-limit patent val, inconsistent intervals in italic

Notation

Ups and downs notation

62edo can be notated with quarter-tone accidentals and ups and downs. This can be done by combining sharps and flats with arrows borrowed from extended Helmholtz-Ellis notation:

Step offset 0 1 2 3 4 5 6 7 8 9
Sharp symbol
 
 
 
 
 
 
 
 
 
 
Flat symbol
 
 
 
 
 
 
 
 
 

Sagittal notation

This notation uses the same sagittal sequence as EDOs 69 and 76, and is a superset of the notation for 31-EDO.

Evo flavor

 Sagittal notationPeriodic table of EDOs with sagittal notation1053/102433/32

Revo flavor

 Sagittal notationPeriodic table of EDOs with sagittal notation1053/102433/32

Evo-SZ flavor

 Sagittal notationPeriodic table of EDOs with sagittal notation1053/102433/32

In the diagrams above, a sagittal symbol followed by an equals sign (=) means that the following comma is the symbol's primary comma (the comma it exactly represents in JI), while an approximately equals sign (≈) means it is a secondary comma (a comma it approximately represents in JI). In both cases the symbol exactly represents the tempered version of the comma in this EDO.

Armodue notation

Armodue nomenclature 8;3 relation
  • Ɨ = Thick (1/8-tone up)
  • = Semisharp (1/4-tone up)
  • b = Flat (5/8-tone down)
  • = Node (sharp/flat blindspot 1/2-tone)
  • # = Sharp (5/8-tone up)
  • v = Semiflat (1/4-tone down)
  • = Thin (1/8-tone down)
# Cents Armodue notation Associated ratio
0 0.0 1
1 19.4
2 38.7 1‡ (9#)
3 58.1 2b
4 77.4 1◊2
5 96.8 1#
6 116.1 2v
7 135.5 2⌐
8 154.8 2 11/10~12/11
9 174.2
10 193.5 2‡
11 212.9 3b 8/7
12 232.3 2◊3
13 251.6 2#
14 271.0 3v
15 290.3 3⌐
16 309.7 3 6/5~7/6
17 329.0
18 348.4 3‡
19 · 367.7 4b 5/4
20 387.1 3◊4
21 406.5 3#
22 425.8 4v (5b)
23 445.2 4⌐
24 464.5 4
25 483.9 4Ɨ (5v)
26 503.2 5⌐ (4‡)
27 · 522.6 5 4/3~11/8
28 541.9
29 561.3 5‡ (4#)
30 580.6 6b 10/7
31 600.0 5◊6
32 619.4 5# 7/5
33 638.7 6v
34 658.1 6⌐
35 · 677.4 6 3/2~16/11
36 696.8
37 716.1 6‡
38 735.5 7b
39 754.8 6◊7
40 774.2 6#
41 793.5 7v
42 812.9 7⌐
43 · 832.3 7 8/5
44 851.6
45 871.0 7‡
46 890.3 8b 5/3~12/7
47 909.7 7◊8
48 929.0 7#
49 948.4 8v
50 967.7 8⌐
51 987.1 8 7/4
52 1006.5
53 1025.8 8‡
54 1045.2 9b 11/6~20/11
55 1064.5 8◊9
56 1083.9 8#
57 1103.2 9v (1b)
58 1122.6 9⌐
59 1141.9 9
60 1161.3 9Ɨ (1v)
61 1180.6 1⌐ (9‡)
62 1200.0 1

Regular temperament properties

62edo is contorted 31edo through the 11-limit.

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3.5.7.11.13 81/80, 99/98, 121/120, 126/125, 169/168 [62 98 144 174 214 229]] +1.38 1.41 7.28
2.3.5.7.11.13.17 81/80, 99/98, 121/120, 126/125, 169/168, 221/220 [62 98 144 174 214 229 253]] +1.47 1.32 6.83
2.3.5.7.11.13.17.19 81/80, 99/98, 121/120, 126/125, 153/152, 169/168, 209/208 [62 98 144 174 214 229 253 263]] +1.50 1.24 6.40
2.3.5.7.11.13.17.19.23 81/80, 99/98, 121/120, 126/125, 153/152, 161/160, 169/168, 209/208 [62 98 144 174 214 229 253 263 280]] +1.55 1.18 6.09

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperament
1 3\62 58.06 27/26 Hemisecordite
1 7\62 135.48 13/12 Doublethink
1 13\62 251.61 15/13 Hemimeantone
1 17\62 329.03 16/11 Mabon
2 3\62 58.06 27/26 Semihemisecordite
2 4\62 77.42 21/20 Semivalentine
2 6\62 116.13 15/14 Semimiracle
2 26\62 503.22 4/3 Semimeantone
31 29\62
(1\62)
561.29
(19.35)
11/8
(196/195)
Kumhar (62e)
31 19\62
(1\62)
367.74
(19.35)
16/13
(77/76)
Gallium

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct

Zeta properties

Zeta peak index

Tuning Strength Closest EDO Integer limit
ZPI Steps per octave Step size (cents) Height Integral Gap EDO Octave (cents) Consistent Distinct
314zpi 61.9380472360525 19.3741981471691 6.262952 0.952068 15.026453 62edo 1201.20028512448 8 8