93edo
The 93 equal division divides the octave into 93 equal parts of 12.903 cents each. 93 = 3 * 31, and 93 is a contorted 31 through the 7 limit. In the 11-limit the patent val tempers out 4000/3993 and in the 13-limit 144/143, 1188/1183 and 364/363. It provides the optimal patent val for the 11-limit prajapati and 13-limit kumhar temperaments, and the 11 and 13 limit 43&50 temperament.
Since 93edo has good approximations of 13th, 17th and 19th harmonics unlike 31edo (as 838.710¢, 103.226¢, and 296.774¢ respectively), it also allows one to give a clearer harmonic identity to 31edo's excellent approximation of 13:17:19.
Since 93edo has a step of 12.903 cents, it also allows one to use its MOS scales as circulating temperaments, which it is the first edo to do.
Tones | Pattern | L:s |
---|---|---|
5 | 3L 2s | 19:18 |
6 | 3L 3s | 16:15 |
7 | 2L 5s | 14:13 |
8 | 5L 3s | 12:11 |
9 | 3L 6s | 11:10 |
10 | 3L 7s | 10:9 |
11 | 5L 6s | 9:8 |
12 | 9L 3s | 8:7 |
13 | 2L 11s | |
14 | 9L 5s | 7:6 |
15 | 3L 12s | |
16 | 13L 3s | 6:5 |
17 | 8L 9s | |
18 | 3L 15s | |
19 | 17L 2s | 5:4 |
20 | 13L 7s | |
21 | 9L 12s | |
22 | 5L 17s | |
23 | 1L 22s | |
24 | 21L 3s | 4:3 |
25 | 18L 7s | |
26 | 15L 11s | |
27 | 12L 15s | |
28 | 9L 19s | |
29 | 6L 23s | |
30 | 3L 27s | |
31 | 31edo | equal |
32 | 29L 3s | 3:2 |
33 | 27L 6s | |
34 | 25L 9s | |
35 | 23L 12s | |
36 | 21L 15s | |
37 | 19L 18s | |
38 | 17L 21s | |
39 | 15L 24s | |
40 | 13L 27s | |
41 | 12L 29s | |
42 | 9L 33s | |
43 | 7L 36s | |
44 | 5L 39s | |
45 | 3L 42s | |
46 | 1L 45s | |
47 | 46L 1s | 2:1 |
48 | 45L 3s | |
49 | 44L 5s | |
50 | 43L 7s | |
51 | 42L 9s | |
52 | 41L 11s | |
53 | 40L 13s | |
54 | 39L 15s | |
55 | 38L 17s | |
56 | 37L 19s | |
57 | 36L 21s | |
58 | 35L 23s | |
59 | 34L 25s | |
60 | 33L 27s | |
61 | 32L 29s | |
62 | 31L 31s | |
63 | 30L 33s | |
64 | 29L 35s | |
65 | 28L 37s | |
66 | 27L 39s | |
67 | 26L 41s | |
68 | 25L 43s | |
69 | 24L 45s | |
70 | 23L 47s | |
71 | 22L 49s | |
72 | 21L 51s | |
73 | 20L 53s | |
74 | 19L 55s |