131edt
← 130edt | 131edt | 132edt → |
131EDT is the equal division of the third harmonic into 131 parts of 14.5187 cents each, corresponding to 82.6520 edo (similar to every third step of 248edo). It is notable for consistency to the no-evens 25-throdd limit. Furthermore, several higher primes, including 29, 31, 37, 43, and 53, lie at close to halfway between 131edt's steps; therefore 262edt, which doubles it, improves representation of a large spectrum of primes, though it loses consistency of a few intervals of 19.
131EDT is the 16th no-twos zeta peak EDT.
Intervals
Steps | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0 | 0 | 1/1 |
1 | 14.5 | 9.9 | |
2 | 29 | 19.8 | |
3 | 43.6 | 29.8 | 39/38 |
4 | 58.1 | 39.7 | 30/29 |
5 | 72.6 | 49.6 | 49/47 |
6 | 87.1 | 59.5 | 41/39 |
7 | 101.6 | 69.5 | 35/33 |
8 | 116.1 | 79.4 | |
9 | 130.7 | 89.3 | 41/38 |
10 | 145.2 | 99.2 | 25/23, 37/34 |
11 | 159.7 | 109.2 | 45/41 |
12 | 174.2 | 119.1 | 21/19 |
13 | 188.7 | 129 | 29/26, 39/35 |
14 | 203.3 | 138.9 | |
15 | 217.8 | 148.9 | 17/15, 42/37 |
16 | 232.3 | 158.8 | |
17 | 246.8 | 168.7 | 15/13 |
18 | 261.3 | 178.6 | |
19 | 275.9 | 188.5 | 27/23, 34/29 |
20 | 290.4 | 198.5 | 13/11 |
21 | 304.9 | 208.4 | |
22 | 319.4 | 218.3 | |
23 | 333.9 | 228.2 | |
24 | 348.4 | 238.2 | 11/9 |
25 | 363 | 248.1 | 37/30 |
26 | 377.5 | 258 | 41/33, 46/37, 51/41 |
27 | 392 | 267.9 | |
28 | 406.5 | 277.9 | |
29 | 421 | 287.8 | 37/29 |
30 | 435.6 | 297.7 | 9/7 |
31 | 450.1 | 307.6 | 35/27 |
32 | 464.6 | 317.6 | 17/13 |
33 | 479.1 | 327.5 | 29/22, 33/25 |
34 | 493.6 | 337.4 | |
35 | 508.2 | 347.3 | 51/38 |
36 | 522.7 | 357.3 | 23/17, 50/37 |
37 | 537.2 | 367.2 | 15/11 |
38 | 551.7 | 377.1 | |
39 | 566.2 | 387 | 43/31 |
40 | 580.7 | 396.9 | 7/5 |
41 | 595.3 | 406.9 | |
42 | 609.8 | 416.8 | 27/19, 37/26 |
43 | 624.3 | 426.7 | 33/23 |
44 | 638.8 | 436.6 | |
45 | 653.3 | 446.6 | 51/35 |
46 | 667.9 | 456.5 | 25/17 |
47 | 682.4 | 466.4 | |
48 | 696.9 | 476.3 | |
49 | 711.4 | 486.3 | |
50 | 725.9 | 496.2 | 35/23, 38/25 |
51 | 740.5 | 506.1 | 23/15 |
52 | 755 | 516 | 17/11 |
53 | 769.5 | 526 | 39/25 |
54 | 784 | 535.9 | 11/7 |
55 | 798.5 | 545.8 | 46/29 |
56 | 813 | 555.7 | |
57 | 827.6 | 565.6 | |
58 | 842.1 | 575.6 | |
59 | 856.6 | 585.5 | 41/25 |
60 | 871.1 | 595.4 | |
61 | 885.6 | 605.3 | 5/3 |
62 | 900.2 | 615.3 | 37/22 |
63 | 914.7 | 625.2 | 39/23 |
64 | 929.2 | 635.1 | |
65 | 943.7 | 645 | 50/29 |
66 | 958.2 | 655 | 47/27 |
67 | 972.8 | 664.9 | |
68 | 987.3 | 674.8 | 23/13 |
69 | 1001.8 | 684.7 | 41/23 |
70 | 1016.3 | 694.7 | 9/5 |
71 | 1030.8 | 704.6 | 49/27 |
72 | 1045.3 | 714.5 | |
73 | 1059.9 | 724.4 | |
74 | 1074.4 | 734.4 | |
75 | 1088.9 | 744.3 | |
76 | 1103.4 | 754.2 | |
77 | 1117.9 | 764.1 | 21/11 |
78 | 1132.5 | 774 | 25/13 |
79 | 1147 | 784 | 33/17 |
80 | 1161.5 | 793.9 | 45/23 |
81 | 1176 | 803.8 | |
82 | 1190.5 | 813.7 | |
83 | 1205.1 | 823.7 | |
84 | 1219.6 | 833.6 | |
85 | 1234.1 | 843.5 | 51/25 |
86 | 1248.6 | 853.4 | 35/17, 37/18 |
87 | 1263.1 | 863.4 | |
88 | 1277.6 | 873.3 | 23/11 |
89 | 1292.2 | 883.2 | 19/9 |
90 | 1306.7 | 893.1 | |
91 | 1321.2 | 903.1 | 15/7 |
92 | 1335.7 | 913 | |
93 | 1350.2 | 922.9 | |
94 | 1364.8 | 932.8 | 11/5 |
95 | 1379.3 | 942.7 | 51/23 |
96 | 1393.8 | 952.7 | 38/17, 47/21 |
97 | 1408.3 | 962.6 | |
98 | 1422.8 | 972.5 | 25/11 |
99 | 1437.4 | 982.4 | 39/17 |
100 | 1451.9 | 992.4 | |
101 | 1466.4 | 1002.3 | 7/3 |
102 | 1480.9 | 1012.2 | |
103 | 1495.4 | 1022.1 | |
104 | 1509.9 | 1032.1 | |
105 | 1524.5 | 1042 | 41/17 |
106 | 1539 | 1051.9 | |
107 | 1553.5 | 1061.8 | 27/11 |
108 | 1568 | 1071.8 | 47/19 |
109 | 1582.5 | 1081.7 | |
110 | 1597.1 | 1091.6 | |
111 | 1611.6 | 1101.5 | 33/13 |
112 | 1626.1 | 1111.5 | 23/9 |
113 | 1640.6 | 1121.4 | 49/19 |
114 | 1655.1 | 1131.3 | 13/5 |
115 | 1669.7 | 1141.2 | |
116 | 1684.2 | 1151.1 | 37/14, 45/17 |
117 | 1698.7 | 1161.1 | |
118 | 1713.2 | 1171 | 35/13 |
119 | 1727.7 | 1180.9 | 19/7 |
120 | 1742.2 | 1190.8 | 41/15 |
121 | 1756.8 | 1200.8 | |
122 | 1771.3 | 1210.7 | |
123 | 1785.8 | 1220.6 | |
124 | 1800.3 | 1230.5 | |
125 | 1814.8 | 1240.5 | |
126 | 1829.4 | 1250.4 | |
127 | 1843.9 | 1260.3 | 29/10 |
128 | 1858.4 | 1270.2 | 38/13 |
129 | 1872.9 | 1280.2 | |
130 | 1887.4 | 1290.1 | |
131 | 1902 | 1300 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +5.06 | +0.00 | +1.28 | -0.48 | +1.04 | +2.21 | +2.38 | -1.44 | +1.73 |
Relative (%) | +34.8 | +0.0 | +8.8 | -3.3 | +7.2 | +15.2 | +16.4 | -9.9 | +11.9 | |
Steps (reduced) |
83 (83) |
131 (0) |
192 (61) |
232 (101) |
286 (24) |
306 (44) |
338 (76) |
351 (89) |
374 (112) |
Harmonic | 25 | 27 | 29 | 31 | 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47 | 49 | 51 | 53 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.57 | +0.00 | +6.96 | -6.87 | +1.04 | +0.81 | +6.23 | +2.21 | +2.74 | -7.12 | +1.28 | -1.40 | -0.96 | +2.38 | -6.14 |
Relative (%) | +17.7 | +0.0 | +47.9 | -47.3 | +7.2 | +5.6 | +42.9 | +15.2 | +18.9 | -49.1 | +8.8 | -9.7 | -6.6 | +16.4 | -42.3 | |
Steps (reduced) |
384 (122) |
393 (0) |
402 (9) |
409 (16) |
417 (24) |
424 (31) |
431 (38) |
437 (44) |
443 (50) |
448 (55) |
454 (61) |
459 (66) |
464 (71) |
469 (76) |
473 (80) |