262edt

From Xenharmonic Wiki
Jump to navigation Jump to search
← 261edt 262edt 263edt →
Prime factorization 2 × 131
Step size 7.25937¢ 
Octave 165\262edt (1197.8¢)
Consistency limit 2
Distinct consistency limit 2

262EDT is the equal division of the third harmonic into 262 parts of 7.2594 cents each, corresponding to 165.3036 edo (similar to every third step of 496edo). It doubles 131edt, which is consistent to the no-evens 25-throdd limit, and is contorted with it to the no-twos 23-limit, but it improves the representation of a number of higher primes so that 262edt is consistent to the entire no-evens 53-throdd limit with the exception of only 9 inconsistent interval pairs (19/13, 19/17, 25/19, 41/19, 41/37, 47/17, 47/25, 47/41, and 49/41, and their complements), all of which are still within 60% of a step off.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 7.26 4.96
2 14.52 9.92
3 21.78 14.89 78/77, 82/81
4 29.04 19.85
5 36.3 24.81
6 43.56 29.77
7 50.82 34.73 35/34
8 58.07 39.69 30/29
9 65.33 44.66 27/26
10 72.59 49.62 49/47
11 79.85 54.58 22/21
12 87.11 59.54 41/39, 81/77
13 94.37 64.5 19/18
14 101.63 69.47 35/33
15 108.89 74.43 33/31, 49/46, 82/77
16 116.15 79.39 31/29, 46/43
17 123.41 84.35 29/27
18 130.67 89.31 55/51
19 137.93 94.27
20 145.19 99.24 62/57
21 152.45 104.2
22 159.71 109.16 34/31, 57/52
23 166.97 114.12
24 174.22 119.08 52/47
25 181.48 124.05
26 188.74 129.01 29/26
27 196 133.97
28 203.26 138.93
29 210.52 143.89 35/31
30 217.78 148.85
31 225.04 153.82
32 232.3 158.78
33 239.56 163.74 31/27, 54/47
34 246.82 168.7
35 254.08 173.66 22/19
36 261.34 178.63 50/43, 57/49
37 268.6 183.59
38 275.86 188.55 34/29
39 283.12 193.51
40 290.37 198.47
41 297.63 203.44
42 304.89 208.4 31/26, 68/57
43 312.15 213.36
44 319.41 218.32
45 326.67 223.28
46 333.93 228.24 57/47
47 341.19 233.21
48 348.45 238.17
49 355.71 243.13 43/35, 70/57
50 362.97 248.09 37/30
51 370.23 253.05 26/21
52 377.49 258.02 46/37, 51/41
53 384.75 262.98
54 392.01 267.94 69/55
55 399.27 272.9 34/27
56 406.52 277.86 43/34
57 413.78 282.82 47/37
58 421.04 287.79 37/29
59 428.3 292.75
60 435.56 297.71 9/7
61 442.82 302.67
62 450.08 307.63 35/27
63 457.34 312.6
64 464.6 317.56 17/13
65 471.86 322.52
66 479.12 327.48 62/47
67 486.38 332.44 49/37
68 493.64 337.4
69 500.9 342.37
70 508.16 347.33 55/41
71 515.42 352.29 35/26, 66/49
72 522.67 357.25 23/17
73 529.93 362.21
74 537.19 367.18 15/11
75 544.45 372.14 63/46
76 551.71 377.1
77 558.97 382.06 29/21
78 566.23 387.02 43/31
79 573.49 391.98
80 580.75 396.95
81 588.01 401.91 66/47
82 595.27 406.87 55/39
83 602.53 411.83
84 609.79 416.79
85 617.05 421.76 10/7
86 624.31 426.72 33/23
87 631.57 431.68
88 638.82 436.64 68/47
89 646.08 441.6
90 653.34 446.56
91 660.6 451.53 63/43
92 667.86 456.49 25/17
93 675.12 461.45
94 682.38 466.41 43/29
95 689.64 471.37 70/47
96 696.9 476.34
97 704.16 481.3
98 711.42 486.26
99 718.68 491.22 50/33
100 725.94 496.18
101 733.2 501.15
102 740.46 506.11 23/15
103 747.72 511.07 57/37, 77/50
104 754.97 516.03
105 762.23 520.99
106 769.49 525.95 39/25
107 776.75 530.92 47/30
108 784.01 535.88
109 791.27 540.84 30/19
110 798.53 545.8 46/29, 65/41
111 805.79 550.76 43/27
112 813.05 555.73
113 820.31 560.69
114 827.57 565.65 50/31
115 834.83 570.61 34/21, 81/50
116 842.09 575.57
117 849.35 580.53 49/30
118 856.61 585.5 41/25
119 863.87 590.46
120 871.12 595.42 43/26
121 878.38 600.38
122 885.64 605.34
123 892.9 610.31 62/37
124 900.16 615.27 37/22
125 907.42 620.23 49/29
126 914.68 625.19 39/23
127 921.94 630.15 46/27, 63/37
128 929.2 635.11 77/45
129 936.46 640.08
130 943.72 645.04 50/29
131 950.98 650
132 958.24 654.96
133 965.5 659.92
134 972.76 664.89
135 980.01 669.85 37/21, 81/46
136 987.27 674.81 23/13
137 994.53 679.77
138 1001.79 684.73 66/37
139 1009.05 689.69 77/43
140 1016.31 694.66
141 1023.57 699.62
142 1030.83 704.58 78/43
143 1038.09 709.54 82/45
144 1045.35 714.5 75/41
145 1052.61 719.47
146 1059.87 724.43
147 1067.13 729.39 50/27, 63/34
148 1074.39 734.35
149 1081.65 739.31
150 1088.91 744.27
151 1096.16 749.24 81/43
152 1103.42 754.2 70/37
153 1110.68 759.16 19/10
154 1117.94 764.12 82/43
155 1125.2 769.08
156 1132.46 774.05 25/13
157 1139.72 779.01
158 1146.98 783.97
159 1154.24 788.93 37/19
160 1161.5 793.89 45/23
161 1168.76 798.85
162 1176.02 803.82
163 1183.28 808.78
164 1190.54 813.74
165 1197.8 818.7
166 1205.06 823.66
167 1212.31 828.63
168 1219.57 833.59
169 1226.83 838.55
170 1234.09 843.51 51/25
171 1241.35 848.47 43/21
172 1248.61 853.44
173 1255.87 858.4
174 1263.13 863.36
175 1270.39 868.32
176 1277.65 873.28 23/11
177 1284.91 878.24 21/10
178 1292.17 883.21
179 1299.43 888.17
180 1306.69 893.13
181 1313.95 898.09 47/22
182 1321.21 903.05
183 1328.46 908.02
184 1335.72 912.98
185 1342.98 917.94 63/29
186 1350.24 922.9
187 1357.5 927.86 46/21
188 1364.76 932.82 11/5
189 1372.02 937.79
190 1379.28 942.75 51/23
191 1386.54 947.71 49/22, 78/35
192 1393.8 952.67
193 1401.06 957.63
194 1408.32 962.6
195 1415.58 967.56 77/34
196 1422.84 972.52
197 1430.1 977.48
198 1437.36 982.44 39/17
199 1444.61 987.4
200 1451.87 992.37 81/35
201 1459.13 997.33
202 1466.39 1002.29 7/3
203 1473.65 1007.25 82/35
204 1480.91 1012.21
205 1488.17 1017.18
206 1495.43 1022.14
207 1502.69 1027.1 81/34
208 1509.95 1032.06 55/23
209 1517.21 1037.02
210 1524.47 1041.98 41/17
211 1531.73 1046.95 63/26
212 1538.99 1051.91
213 1546.25 1056.87
214 1553.51 1061.83
215 1560.76 1066.79
216 1568.02 1071.76 47/19
217 1575.28 1076.72 77/31, 82/33
218 1582.54 1081.68
219 1589.8 1086.64
220 1597.06 1091.6 78/31
221 1604.32 1096.56
222 1611.58 1101.53
223 1618.84 1106.49
224 1626.1 1111.45
225 1633.36 1116.41
226 1640.62 1121.37 49/19
227 1647.88 1126.34 57/22
228 1655.14 1131.3
229 1662.4 1136.26 47/18, 81/31
230 1669.66 1141.22
231 1676.91 1146.18
232 1684.17 1151.15 82/31
233 1691.43 1156.11
234 1698.69 1161.07
235 1705.95 1166.03
236 1713.21 1170.99 78/29
237 1720.47 1175.95
238 1727.73 1180.92
239 1734.99 1185.88
240 1742.25 1190.84 52/19
241 1749.51 1195.8
242 1756.77 1200.76
243 1764.03 1205.73
244 1771.29 1210.69
245 1778.55 1215.65 81/29
246 1785.81 1220.61
247 1793.06 1225.57 31/11
248 1800.32 1230.53
249 1807.58 1235.5 54/19
250 1814.84 1240.46 77/27
251 1822.1 1245.42 63/22
252 1829.36 1250.38
253 1836.62 1255.34 26/9
254 1843.88 1260.31 29/10
255 1851.14 1265.27
256 1858.4 1270.23
257 1865.66 1275.19
258 1872.92 1280.15
259 1880.18 1285.11 77/26
260 1887.44 1290.08
261 1894.7 1295.04
262 1901.96 1300 3/1

Harmonics

Approximation of prime harmonics in 262edt
Harmonic 2 3 5 7 11 13 17 19 23
Error Absolute (¢) -2.20 +0.00 +1.28 -0.48 +1.04 +2.21 +2.38 -1.44 +1.73
Relative (%) -30.4 +0.0 +17.7 -6.6 +14.4 +30.4 +32.8 -19.8 +23.9
Steps
(reduced)
165
(165)
262
(0)
384
(122)
464
(202)
572
(48)
612
(88)
676
(152)
702
(178)
748
(224)
Approximation of odd harmonics in 262edt
Harmonic 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53
Error Absolute (¢) +2.57 +0.00 -0.30 +0.39 +1.04 +0.81 -1.03 +2.21 +2.74 +0.14 +1.28 -1.40 -0.96 +2.38 +1.12
Relative (%) +35.4 +0.0 -4.2 +5.4 +14.4 +11.1 -14.1 +30.4 +37.7 +1.9 +17.7 -19.4 -13.2 +32.8 +15.4
Steps
(reduced)
768
(244)
786
(0)
803
(17)
819
(33)
834
(48)
848
(62)
861
(75)
874
(88)
886
(100)
897
(111)
908
(122)
918
(132)
928
(142)
938
(152)
947
(161)