262edt

From Xenharmonic Wiki
Jump to navigation Jump to search
← 261edt 262edt 263edt →
Prime factorization 2 × 131
Step size 7.25937¢ 
Octave 165\262edt (1197.8¢)
Consistency limit 2
Distinct consistency limit 2

262EDT is the equal division of the third harmonic into 262 parts of 7.2594 cents each, corresponding to 165.3036 edo (similar to every third step of 496edo). It doubles 131edt, which is consistent to the no-evens 25-throdd limit, and is contorted with it to the no-twos 23-limit, but it improves the representation of a number of higher primes so that 262edt is consistent to the entire no-evens 53-throdd limit with the exception of only 9 inconsistent interval pairs (19/13, 19/17, 25/19, 41/19, 41/37, 47/17, 47/25, 47/41, and 49/41), all of which are still within 60% of a step off.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 7.259
2 14.519
3 21.778 78/77, 82/81
4 29.037
5 36.297
6 43.556
7 50.816 35/34
8 58.075 30/29
9 65.334 27/26
10 72.594 49/47
11 79.853 22/21
12 87.112 41/39, 81/77
13 94.372 19/18
14 101.631 35/33
15 108.891 33/31, 49/46, 82/77
16 116.15 31/29, 46/43
17 123.409 29/27
18 130.669 55/51
19 137.928
20 145.187 62/57
21 152.447
22 159.706 34/31, 57/52
23 166.966
24 174.225 52/47
25 181.484
26 188.744 29/26
27 196.003
28 203.262
29 210.522 35/31
30 217.781
31 225.04
32 232.3
33 239.559 31/27, 54/47
34 246.819
35 254.078 22/19
36 261.337 50/43, 57/49
37 268.597
38 275.856 34/29
39 283.115
40 290.375
41 297.634
42 304.894 31/26, 68/57
43 312.153
44 319.412
45 326.672
46 333.931 57/47
47 341.19
48 348.45
49 355.709 43/35, 70/57
50 362.969 37/30
51 370.228 26/21
52 377.487 46/37, 51/41
53 384.747
54 392.006 69/55
55 399.265 34/27
56 406.525 43/34
57 413.784 47/37
58 421.043 37/29
59 428.303
60 435.562 9/7
61 442.822
62 450.081 35/27
63 457.34
64 464.6 17/13
65 471.859
66 479.118 62/47
67 486.378 49/37
68 493.637
69 500.897
70 508.156 55/41
71 515.415 35/26, 66/49
72 522.675 23/17
73 529.934
74 537.193 15/11
75 544.453 63/46
76 551.712
77 558.972 29/21
78 566.231 43/31
79 573.49
80 580.75
81 588.009 66/47
82 595.268 55/39
83 602.528
84 609.787
85 617.046 10/7
86 624.306 33/23
87 631.565
88 638.825 68/47
89 646.084
90 653.343
91 660.603 63/43
92 667.862 25/17
93 675.121
94 682.381 43/29
95 689.64 70/47
96 696.9
97 704.159
98 711.418
99 718.678 50/33
100 725.937
101 733.196
102 740.456 23/15
103 747.715 57/37, 77/50
104 754.975
105 762.234
106 769.493 39/25
107 776.753 47/30
108 784.012
109 791.271 30/19
110 798.531 46/29, 65/41
111 805.79 43/27
112 813.049
113 820.309
114 827.568 50/31
115 834.828 34/21, 81/50
116 842.087
117 849.346 49/30
118 856.606 41/25
119 863.865
120 871.124 43/26
121 878.384
122 885.643
123 892.903 62/37
124 900.162 37/22
125 907.421 49/29
126 914.681 39/23
127 921.94 46/27, 63/37
128 929.199 77/45
129 936.459
130 943.718 50/29
131 950.978
132 958.237
133 965.496
134 972.756
135 980.015 37/21, 81/46
136 987.274 23/13
137 994.534
138 1001.793 66/37
139 1009.052 77/43
140 1016.312
141 1023.571
142 1030.831 78/43
143 1038.09 82/45
144 1045.349 75/41
145 1052.609
146 1059.868
147 1067.127 50/27, 63/34
148 1074.387
149 1081.646
150 1088.906
151 1096.165 81/43
152 1103.424 70/37
153 1110.684 19/10
154 1117.943 82/43
155 1125.202
156 1132.462 25/13
157 1139.721
158 1146.98
159 1154.24 37/19
160 1161.499 45/23
161 1168.759
162 1176.018
163 1183.277
164 1190.537
165 1197.796
166 1205.055
167 1212.315
168 1219.574
169 1226.834
170 1234.093 51/25
171 1241.352 43/21
172 1248.612
173 1255.871
174 1263.13
175 1270.39
176 1277.649 23/11
177 1284.909 21/10
178 1292.168
179 1299.427
180 1306.687
181 1313.946 47/22
182 1321.205
183 1328.465
184 1335.724
185 1342.983 63/29
186 1350.243
187 1357.502 46/21
188 1364.762 11/5
189 1372.021
190 1379.28 51/23
191 1386.54 49/22, 78/35
192 1393.799
193 1401.058
194 1408.318
195 1415.577 77/34
196 1422.837
197 1430.096
198 1437.355 39/17
199 1444.615
200 1451.874 81/35
201 1459.133
202 1466.393 7/3
203 1473.652 82/35
204 1480.912
205 1488.171
206 1495.43
207 1502.69 81/34
208 1509.949 55/23
209 1517.208
210 1524.468 41/17
211 1531.727 63/26
212 1538.986
213 1546.246
214 1553.505
215 1560.765
216 1568.024 47/19
217 1575.283 77/31, 82/33
218 1582.543
219 1589.802
220 1597.061 78/31
221 1604.321
222 1611.58
223 1618.84
224 1626.099
225 1633.358
226 1640.618 49/19
227 1647.877 57/22
228 1655.136
229 1662.396 47/18, 81/31
230 1669.655
231 1676.915
232 1684.174 82/31
233 1691.433
234 1698.693
235 1705.952
236 1713.211 78/29
237 1720.471
238 1727.73
239 1734.989
240 1742.249 52/19
241 1749.508
242 1756.768
243 1764.027
244 1771.286
245 1778.546 81/29
246 1785.805
247 1793.064 31/11
248 1800.324
249 1807.583 54/19
250 1814.843 77/27
251 1822.102 63/22
252 1829.361
253 1836.621 26/9
254 1843.88 29/10
255 1851.139
256 1858.399
257 1865.658
258 1872.918
259 1880.177 77/26
260 1887.436
261 1894.696
262 1901.955 3/1

Harmonics

Approximation of prime harmonics in 262edt
Harmonic 2 3 5 7 11 13 17 19 23
Error Absolute (¢) -2.20 +0.00 +1.28 -0.48 +1.04 +2.21 +2.38 -1.44 +1.73
Relative (%) -30.4 +0.0 +17.7 -6.6 +14.4 +30.4 +32.8 -19.8 +23.9
Steps
(reduced)
165
(165)
262
(0)
384
(122)
464
(202)
572
(48)
612
(88)
676
(152)
702
(178)
748
(224)
Approximation of odd harmonics in 262edt
Harmonic 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53
Error Absolute (¢) +2.57 +0.00 -0.30 +0.39 +1.04 +0.81 -1.03 +2.21 +2.74 +0.14 +1.28 -1.40 -0.96 +2.38 +1.12
Relative (%) +35.4 +0.0 -4.2 +5.4 +14.4 +11.1 -14.1 +30.4 +37.7 +1.9 +17.7 -19.4 -13.2 +32.8 +15.4
Steps
(reduced)
768
(244)
786
(0)
803
(17)
819
(33)
834
(48)
848
(62)
861
(75)
874
(88)
886
(100)
897
(111)
908
(122)
918
(132)
928
(142)
938
(152)
947
(161)