262edt
Jump to navigation
Jump to search
Prime factorization
2 × 131
Step size
7.25937¢
Octave
165\262edt (1197.8¢)
Consistency limit
2
Distinct consistency limit
2
← 261edt | 262edt | 263edt → |
262EDT is the equal division of the third harmonic into 262 parts of 7.2594 cents each, corresponding to 165.3036 edo (similar to every third step of 496edo). It doubles 131edt, which is consistent to the no-evens 25-throdd limit, and is contorted with it to the no-twos 23-limit, but it improves the representation of a number of higher primes so that 262edt is consistent to the entire no-evens 53-throdd limit with the exception of only 9 inconsistent interval pairs (19/13, 19/17, 25/19, 41/19, 41/37, 47/17, 47/25, 47/41, and 49/41), all of which are still within 60% of a step off.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 7.259 | |
2 | 14.519 | |
3 | 21.778 | 78/77, 82/81 |
4 | 29.037 | |
5 | 36.297 | |
6 | 43.556 | |
7 | 50.816 | 35/34 |
8 | 58.075 | 30/29 |
9 | 65.334 | 27/26 |
10 | 72.594 | 49/47 |
11 | 79.853 | 22/21 |
12 | 87.112 | 41/39, 81/77 |
13 | 94.372 | 19/18 |
14 | 101.631 | 35/33 |
15 | 108.891 | 33/31, 49/46, 82/77 |
16 | 116.15 | 31/29, 46/43 |
17 | 123.409 | 29/27 |
18 | 130.669 | 55/51 |
19 | 137.928 | |
20 | 145.187 | 62/57 |
21 | 152.447 | |
22 | 159.706 | 34/31, 57/52 |
23 | 166.966 | |
24 | 174.225 | 52/47 |
25 | 181.484 | |
26 | 188.744 | 29/26 |
27 | 196.003 | |
28 | 203.262 | |
29 | 210.522 | 35/31 |
30 | 217.781 | |
31 | 225.04 | |
32 | 232.3 | |
33 | 239.559 | 31/27, 54/47 |
34 | 246.819 | |
35 | 254.078 | 22/19 |
36 | 261.337 | 50/43, 57/49 |
37 | 268.597 | |
38 | 275.856 | 34/29 |
39 | 283.115 | |
40 | 290.375 | |
41 | 297.634 | |
42 | 304.894 | 31/26, 68/57 |
43 | 312.153 | |
44 | 319.412 | |
45 | 326.672 | |
46 | 333.931 | 57/47 |
47 | 341.19 | |
48 | 348.45 | |
49 | 355.709 | 43/35, 70/57 |
50 | 362.969 | 37/30 |
51 | 370.228 | 26/21 |
52 | 377.487 | 46/37, 51/41 |
53 | 384.747 | |
54 | 392.006 | 69/55 |
55 | 399.265 | 34/27 |
56 | 406.525 | 43/34 |
57 | 413.784 | 47/37 |
58 | 421.043 | 37/29 |
59 | 428.303 | |
60 | 435.562 | 9/7 |
61 | 442.822 | |
62 | 450.081 | 35/27 |
63 | 457.34 | |
64 | 464.6 | 17/13 |
65 | 471.859 | |
66 | 479.118 | 62/47 |
67 | 486.378 | 49/37 |
68 | 493.637 | |
69 | 500.897 | |
70 | 508.156 | 55/41 |
71 | 515.415 | 35/26, 66/49 |
72 | 522.675 | 23/17 |
73 | 529.934 | |
74 | 537.193 | 15/11 |
75 | 544.453 | 63/46 |
76 | 551.712 | |
77 | 558.972 | 29/21 |
78 | 566.231 | 43/31 |
79 | 573.49 | |
80 | 580.75 | |
81 | 588.009 | 66/47 |
82 | 595.268 | 55/39 |
83 | 602.528 | |
84 | 609.787 | |
85 | 617.046 | 10/7 |
86 | 624.306 | 33/23 |
87 | 631.565 | |
88 | 638.825 | 68/47 |
89 | 646.084 | |
90 | 653.343 | |
91 | 660.603 | 63/43 |
92 | 667.862 | 25/17 |
93 | 675.121 | |
94 | 682.381 | 43/29 |
95 | 689.64 | 70/47 |
96 | 696.9 | |
97 | 704.159 | |
98 | 711.418 | |
99 | 718.678 | 50/33 |
100 | 725.937 | |
101 | 733.196 | |
102 | 740.456 | 23/15 |
103 | 747.715 | 57/37, 77/50 |
104 | 754.975 | |
105 | 762.234 | |
106 | 769.493 | 39/25 |
107 | 776.753 | 47/30 |
108 | 784.012 | |
109 | 791.271 | 30/19 |
110 | 798.531 | 46/29, 65/41 |
111 | 805.79 | 43/27 |
112 | 813.049 | |
113 | 820.309 | |
114 | 827.568 | 50/31 |
115 | 834.828 | 34/21, 81/50 |
116 | 842.087 | |
117 | 849.346 | 49/30 |
118 | 856.606 | 41/25 |
119 | 863.865 | |
120 | 871.124 | 43/26 |
121 | 878.384 | |
122 | 885.643 | |
123 | 892.903 | 62/37 |
124 | 900.162 | 37/22 |
125 | 907.421 | 49/29 |
126 | 914.681 | 39/23 |
127 | 921.94 | 46/27, 63/37 |
128 | 929.199 | 77/45 |
129 | 936.459 | |
130 | 943.718 | 50/29 |
131 | 950.978 | |
132 | 958.237 | |
133 | 965.496 | |
134 | 972.756 | |
135 | 980.015 | 37/21, 81/46 |
136 | 987.274 | 23/13 |
137 | 994.534 | |
138 | 1001.793 | 66/37 |
139 | 1009.052 | 77/43 |
140 | 1016.312 | |
141 | 1023.571 | |
142 | 1030.831 | 78/43 |
143 | 1038.09 | 82/45 |
144 | 1045.349 | 75/41 |
145 | 1052.609 | |
146 | 1059.868 | |
147 | 1067.127 | 50/27, 63/34 |
148 | 1074.387 | |
149 | 1081.646 | |
150 | 1088.906 | |
151 | 1096.165 | 81/43 |
152 | 1103.424 | 70/37 |
153 | 1110.684 | 19/10 |
154 | 1117.943 | 82/43 |
155 | 1125.202 | |
156 | 1132.462 | 25/13 |
157 | 1139.721 | |
158 | 1146.98 | |
159 | 1154.24 | 37/19 |
160 | 1161.499 | 45/23 |
161 | 1168.759 | |
162 | 1176.018 | |
163 | 1183.277 | |
164 | 1190.537 | |
165 | 1197.796 | |
166 | 1205.055 | |
167 | 1212.315 | |
168 | 1219.574 | |
169 | 1226.834 | |
170 | 1234.093 | 51/25 |
171 | 1241.352 | 43/21 |
172 | 1248.612 | |
173 | 1255.871 | |
174 | 1263.13 | |
175 | 1270.39 | |
176 | 1277.649 | 23/11 |
177 | 1284.909 | 21/10 |
178 | 1292.168 | |
179 | 1299.427 | |
180 | 1306.687 | |
181 | 1313.946 | 47/22 |
182 | 1321.205 | |
183 | 1328.465 | |
184 | 1335.724 | |
185 | 1342.983 | 63/29 |
186 | 1350.243 | |
187 | 1357.502 | 46/21 |
188 | 1364.762 | 11/5 |
189 | 1372.021 | |
190 | 1379.28 | 51/23 |
191 | 1386.54 | 49/22, 78/35 |
192 | 1393.799 | |
193 | 1401.058 | |
194 | 1408.318 | |
195 | 1415.577 | 77/34 |
196 | 1422.837 | |
197 | 1430.096 | |
198 | 1437.355 | 39/17 |
199 | 1444.615 | |
200 | 1451.874 | 81/35 |
201 | 1459.133 | |
202 | 1466.393 | 7/3 |
203 | 1473.652 | 82/35 |
204 | 1480.912 | |
205 | 1488.171 | |
206 | 1495.43 | |
207 | 1502.69 | 81/34 |
208 | 1509.949 | 55/23 |
209 | 1517.208 | |
210 | 1524.468 | 41/17 |
211 | 1531.727 | 63/26 |
212 | 1538.986 | |
213 | 1546.246 | |
214 | 1553.505 | |
215 | 1560.765 | |
216 | 1568.024 | 47/19 |
217 | 1575.283 | 77/31, 82/33 |
218 | 1582.543 | |
219 | 1589.802 | |
220 | 1597.061 | 78/31 |
221 | 1604.321 | |
222 | 1611.58 | |
223 | 1618.84 | |
224 | 1626.099 | |
225 | 1633.358 | |
226 | 1640.618 | 49/19 |
227 | 1647.877 | 57/22 |
228 | 1655.136 | |
229 | 1662.396 | 47/18, 81/31 |
230 | 1669.655 | |
231 | 1676.915 | |
232 | 1684.174 | 82/31 |
233 | 1691.433 | |
234 | 1698.693 | |
235 | 1705.952 | |
236 | 1713.211 | 78/29 |
237 | 1720.471 | |
238 | 1727.73 | |
239 | 1734.989 | |
240 | 1742.249 | 52/19 |
241 | 1749.508 | |
242 | 1756.768 | |
243 | 1764.027 | |
244 | 1771.286 | |
245 | 1778.546 | 81/29 |
246 | 1785.805 | |
247 | 1793.064 | 31/11 |
248 | 1800.324 | |
249 | 1807.583 | 54/19 |
250 | 1814.843 | 77/27 |
251 | 1822.102 | 63/22 |
252 | 1829.361 | |
253 | 1836.621 | 26/9 |
254 | 1843.88 | 29/10 |
255 | 1851.139 | |
256 | 1858.399 | |
257 | 1865.658 | |
258 | 1872.918 | |
259 | 1880.177 | 77/26 |
260 | 1887.436 | |
261 | 1894.696 | |
262 | 1901.955 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.20 | +0.00 | +1.28 | -0.48 | +1.04 | +2.21 | +2.38 | -1.44 | +1.73 |
Relative (%) | -30.4 | +0.0 | +17.7 | -6.6 | +14.4 | +30.4 | +32.8 | -19.8 | +23.9 | |
Steps (reduced) |
165 (165) |
262 (0) |
384 (122) |
464 (202) |
572 (48) |
612 (88) |
676 (152) |
702 (178) |
748 (224) |
Harmonic | 25 | 27 | 29 | 31 | 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47 | 49 | 51 | 53 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.57 | +0.00 | -0.30 | +0.39 | +1.04 | +0.81 | -1.03 | +2.21 | +2.74 | +0.14 | +1.28 | -1.40 | -0.96 | +2.38 | +1.12 |
Relative (%) | +35.4 | +0.0 | -4.2 | +5.4 | +14.4 | +11.1 | -14.1 | +30.4 | +37.7 | +1.9 | +17.7 | -19.4 | -13.2 | +32.8 | +15.4 | |
Steps (reduced) |
768 (244) |
786 (0) |
803 (17) |
819 (33) |
834 (48) |
848 (62) |
861 (75) |
874 (88) |
886 (100) |
897 (111) |
908 (122) |
918 (132) |
928 (142) |
938 (152) |
947 (161) |