57edo

From Xenharmonic Wiki
Revision as of 02:29, 13 June 2023 by CompactStar (talk | contribs)
Jump to navigation Jump to search
← 56edo 57edo 58edo →
Prime factorization 3 × 19
Step size 21.0526 ¢ 
Fifth 33\57 (694.737 ¢) (→ 11\19)
Semitones (A1:m2) 3:6 (63.16 ¢ : 126.3 ¢)
Dual sharp fifth 34\57 (715.789 ¢)
Dual flat fifth 33\57 (694.737 ¢) (→ 11\19)
Dual major 2nd 10\57 (210.526 ¢)
Consistency limit 7
Distinct consistency limit 7

57edo divides the octave into 57 parts of size 21.053¢. It can be used to tune mothra temperament, and is an excellent tuning for the 2.5/3.7.11.13.17.19 just intonation subgroup. One way to describe 57 is that it has a 5-limit part consisting of three versions of 19, plus a no-threes no-fives part which is much more accurate. A good generator to exploit the 2.5/3.7.11.13.17.19 aspect of 57 is the approximate 11/8, which is 26\57. This gives the 19-limit 46&57 temperament Heinz.

5-limit commas: 81/80, 3125/3072

7-limit commas: 81/80, 3125/3072, 1029/1024

11-limit commas: 99/98, 385/384, 441/440, 625/616

Just approximation

Script error: No such module "primes_in_edo".

Intervals

Degree Cents Ups and downs notation (flat fifth 11\19) Ups and downs notation (sharp fifth 34\57)
0 0.0000 D D
1 21.0526 ^D, ^E♭♭♭ ^D, E♭
2 42.1053 vD♯, vE♭♭ ^^D, ^E♭
3 63.1579 D♯, E♭♭ ^3D, ^^E♭
4 84.2105 ^D♯, ^E♭♭ ^4D, ^3E♭
5 105.2632 vD𝄪, vE♭ ^5D, ^4E♭
6 126.3158 D𝄪, E♭ v4D♯, v5E
7 147.3684 ^D𝄪, ^E♭ v3D♯, v4E
8 168.42105 vD♯𝄪, vE vvD♯, v3E
9 189.4737 E vD♯, vvE
10 210.5263 ^E, ^F♭♭ D♯, vE
11 231.57895 vE♯, vF♭ E
12 252.6316 E♯, F♭ F
13 273.6842 ^E♯, ^F♭ ^F, G♭
14 294.7368 vE𝄪, vF ^^F, ^G♭
15 315.7895 F ^3F, ^^G♭
16 336.8421 ^F, ^G♭♭♭ ^4F, ^3G♭
17 357.8947 vF♯, vG♭♭ ^5F, ^4G♭
18 378.9474 F♯, G♭♭ v4F♯, v5G
19 400 ^F♯, ^G♭♭ v3F♯, v4G
20 421.0526 vF𝄪, vG♭ vvF♯, v3G
21 442.1053 F𝄪, G♭ vF♯, vvG
22 463.1579 ^F𝄪, ^G♭ F♯, vG
23 484.2105 vF♯𝄪, vG G
24 505.2632 G ^G, A♭
25 526.3158 ^G, ^A♭♭♭ ^^G, ^A♭
26 547.3684 vG♯, vA♭♭ ^3G, ^^A♭
27 568.42105 G♯, A♭♭ ^4G, ^3A♭
28 589.4737 ^G♯, ^A♭♭ ^5G, ^4A♭
29 610.5263 vG𝄪, vA♭ v4G♯, v5A
30 631.57895 G𝄪, A♭ v3G♯, v4A
31 652.6316 ^G𝄪, ^A♭ vvG♯, v3A
32 673.6842 vG♯𝄪, vA vG♯, vvA
33 694.7368 A G♯, vA
34 715.7895 ^A, ^B♭♭♭ A
35 736.8421 vA♯, vB♭♭ ^A, B♭
36 757.8947 A♯, B♭♭ ^^A, ^B♭
37 778.9474 ^A♯, ^B♭♭ ^3A, ^^B♭
38 800 vA𝄪, vB♭ ^4A, ^3B♭
39 821.0526 A𝄪, B♭ ^5A, ^4B♭
40 842.1053 ^A𝄪, ^B♭ v4A♯, v5B
41 863.1579 vA♯𝄪, vB v3A♯, v4B
42 884.2105 B vvA♯, v3B
43 905.2632 ^B, ^C♭♭ vA♯, vvB
44 926.3158 vB♯, vC♭ A♯, vB
45 947.3684 B♯, C♭ B
46 968.42105 ^B♯, ^C♭ C
47 989.4737 vB𝄪, vC ^C, D♭
48 1010.5263 C ^^C, ^D♭
49 1031.57895 ^C, ^D♭♭♭ ^3C, ^^D♭
50 1052.6316 vC♯, vD♭♭ ^4C, ^3D♭
51 1073.6842 C♯, D♭♭ ^5C, ^4D♭
52 1094.7368 ^C♯, ^D♭♭ v4C♯, v5D
53 1115.7895 vC𝄪, vD♭ v3C♯, v4D
54 1136.8421 C𝄪, D♭ vvC♯, v3D
55 1157.8947 ^C𝄪, ^D♭ vC♯, vvD
56 1178.9474 vC♯𝄪, vD C♯, vD
57 1200 D D

Scales of 57EDO

2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 - 3MOS of type 18L 21s (augene)