Syntonic–kleismic equivalence continuum: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
m FloraC moved page Syntonic-enneadecal equivalence continuum to Syntonic-kleismic equivalence continuum: Adopt a more reasonable name
m Cleanup
Line 91: Line 91:


== Lalayo ==
== Lalayo ==
[[Comma list]]: {{Monzo|-26 15 1}} = 71744535/67108864
[[Subgroup]]: 2.3.5
 
[[Comma list]]: {{monzo| -26 15 1 }} = 71744535/67108864


[[Mapping]]: [{{val| 1 2 -4 }}, {{val| 0 -1 15 }}]
[[Mapping]]: [{{val| 1 2 -4 }}, {{val| 0 -1 15 }}]
Line 102: Line 104:


== Lalasepyo (8c & 19) ==
== Lalasepyo (8c & 19) ==
[[Comma list]]: {{Monzo|-32 10 7}} = 4613203125/4294967296
[[Subgroup]]: 2.3.5
 
[[Comma list]]: {{monzo| -32 10 7 }} = 4613203125/4294967296


[[Mapping]]: [{{val| 1 -1 6 }}, {{val| 0 7 -10 }}]
[[Mapping]]: [{{val| 1 -1 6 }}, {{val| 0 7 -10 }}]
Line 115: Line 119:


== Counterhanson ==
== Counterhanson ==
{{See also|Ragismic microtemperaments #Counterkleismic}}
{{See also| Ragismic microtemperaments #Counterkleismic }}
 
[[Subgroup]]: 2.3.5


[[Comma list]]: {{Monzo|-20 -24 25}} = 298023223876953125/296148833645101056
[[Comma list]]: {{monzo| -20 -24 25 }} = 298023223876953125/296148833645101056


[[Mapping]]: [{{val|1 -5 -4}}, {{val|0 25 24}}]
[[Mapping]]: [{{val| 1 -5 -4 }}, {{val| 0 25 2 4}}]


[[POTE generator]]: ~6/5 = 316.081 cents
[[Optimal tuning]] ([[POTE]]): ~6/5 = 316.081


{{Val list|legend=1| 19, 148, 167, 186, 205, 224, 429, 653, 1082, 1735c }}
{{Val list|legend=1| 19, 148, 167, 186, 205, 224, 429, 653, 1082, 1735c }}
Line 128: Line 134:


== 19 & 506 ==
== 19 & 506 ==
[[Comma list]]: {{Monzo| 38 61 -58 }}
[[Subgroup]]: 2.3.5
 
[[Comma list]]: {{monzo| 38 61 -58 }}


[[Mapping]]: [{{val| 1 26 28 }}, {{val| 0 -58 -61 }}]
[[Mapping]]: [{{val| 1 26 28 }}, {{val| 0 -58 -61 }}]


[[POTE generator]]: ~{{monzo|-12 -20 19}} = 505.1394 cents
[[Optimal tuning]] ([[POTE]]): ~{{monzo| -12 -20 19 }} = 505.1394


{{Val list|legend=1| 19, 468, 487, 506, 1031 }}
{{Val list|legend=1| 19, 468, 487, 506, 1031 }}
Line 141: Line 149:


== Countermeantone ==
== Countermeantone ==
[[Comma list]]: {{Monzo|10 23 -20}} = 96402615118848/95367431640625
[[Subgroup]]: 2.3.5


[[Mapping]]: [{{val|1 10 12}}, {{val|0 -20 -23}}]
[[Comma list]]: {{monzo| 10 23 -20 }} = 96402615118848/95367431640625


[[POTE generator]]: ~104976/78125 = 504.913 cents
[[Mapping]]: [{{val| 1 10 12 }}, {{val| 0 -20 -23 }}]
 
[[Optimal tuning]] ([[POTE]]): ~104976/78125 = 504.913


{{Val list|legend=1| 19, 126, 145, 164, 183, 713, 896c, 1079c, 1262c }}
{{Val list|legend=1| 19, 126, 145, 164, 183, 713, 896c, 1079c, 1262c }}
Line 152: Line 162:


== Mowgli ==
== Mowgli ==
[[Comma list]]: {{Monzo|0 22 -15}}
[[Subgroup]]: 2.3.5
 
[[Comma list]]: {{monzo| 0 22 -15 }}


[[Mapping]]: [{{val| 1 0 0 }}, {{val| 0 15 22 }}]
[[Mapping]]: [{{val| 1 0 0 }}, {{val| 0 15 22 }}]


[[POTE generator]]: ~27/25 = 126.7237 cents
[[Optimal tuning]] ([[POTE]]): ~27/25 = 126.7237


{{Val list|legend=1| 19, 85c, 104c, 123, 142, 161 }}
{{Val list|legend=1| 19, 85c, 104c, 123, 142, 161 }}

Revision as of 08:48, 31 October 2022

The syntonic-kleismic equivalence continuum (or syntonic-enneadecal equivalence continuum) is a continuum of 5-limit temperaments which equate a number of syntonic commas (81/80) with the 19-comma ([-30 19).

All temperaments in the continuum satisfy (81/80)n ~ [-30 19. Varying n results in different temperaments listed in the table below. It converges to meantone as n approaches infinity. If we allow non-integer and infinite n, the continuum describes the set of all 5-limit temperaments supported by 19edo (due to it being the unique equal temperament that tempers both commas and thus tempers all combinations of them). The just value of n is approximately 6.376…, and temperaments having n near this value tend to be the most accurate ones.

This continuum can also be expressed as the relationship between 81/80 and the enneadeca ([-14 -19 19). That is, (81/80)k ~ [-14 -19 19. In this case, k = 3n - 19.

Temperaments in the continuum
n Temperament Comma
Ratio Monzo
0 19 & 19c 1162261467/1073741824 [-30 19
1 Lalayo 71744535/67108864 [-26 15 1
2 Hogzilla 4428675/4194304 [-22 11 2
3 Stump 273375/262144 [-18 7 3
4 Negri 16875/16384 [-14 3 4
5 Magic 3125/3072 [-10 -1 5
6 Hanson 15625/15552 [-6 -5 6
7 Sensi 78732/78125 [2 9 -7
8 Unicorn 1594323/1562500 [-2 13 -8
9 19 & 51c 129140163/125000000 [-6 17 -9
Meantone 81/80 [-4 4 -1

Examples of temperaments with fractional values of k:

Lalayo

Subgroup: 2.3.5

Comma list: [-26 15 1 = 71744535/67108864

Mapping: [1 2 -4], 0 -1 15]]

POTE generator: ~4/3 = 505.348 cents

Template:Val list

Badness: 0.803397

Lalasepyo (8c & 19)

Subgroup: 2.3.5

Comma list: [-32 10 7 = 4613203125/4294967296

Mapping: [1 -1 6], 0 7 -10]]

POTE generator: ~675/512 = 442.2674 cents

Template:Val list

Badness: 1.061630

The temperament finder - 5-limit 19 & 8c

Counterhanson

Subgroup: 2.3.5

Comma list: [-20 -24 25 = 298023223876953125/296148833645101056

Mapping: [1 -5 -4], 0 25 2 4]]

Optimal tuning (POTE): ~6/5 = 316.081

Template:Val list

Badness: 0.317551

19 & 506

Subgroup: 2.3.5

Comma list: [38 61 -58

Mapping: [1 26 28], 0 -58 -61]]

Optimal tuning (POTE): ~[-12 -20 19 = 505.1394

Template:Val list

Badness: 2.105450

The temperament finder - 5-limit 19 & 506

Countermeantone

Subgroup: 2.3.5

Comma list: [10 23 -20 = 96402615118848/95367431640625

Mapping: [1 10 12], 0 -20 -23]]

Optimal tuning (POTE): ~104976/78125 = 504.913

Template:Val list

Badness: 0.373477

Mowgli

Subgroup: 2.3.5

Comma list: [0 22 -15

Mapping: [1 0 0], 0 15 22]]

Optimal tuning (POTE): ~27/25 = 126.7237

Template:Val list

Badness: 0.653871

Oviminor

Subgroup: 2.3.5

Comma list: [-134 -185 184

Mapping: [1 50 51], 0 -184 -185]]

Optimal tuning (CTE): ~6/5 = 315.7501

Template:Val list

Badness: 32.0