Syntonic–kleismic equivalence continuum: Difference between revisions
m FloraC moved page Syntonic-enneadecal equivalence continuum to Syntonic-kleismic equivalence continuum: Adopt a more reasonable name |
m Cleanup |
||
Line 91: | Line 91: | ||
== Lalayo == | == Lalayo == | ||
[[Comma list]]: {{ | [[Subgroup]]: 2.3.5 | ||
[[Comma list]]: {{monzo| -26 15 1 }} = 71744535/67108864 | |||
[[Mapping]]: [{{val| 1 2 -4 }}, {{val| 0 -1 15 }}] | [[Mapping]]: [{{val| 1 2 -4 }}, {{val| 0 -1 15 }}] | ||
Line 102: | Line 104: | ||
== Lalasepyo (8c & 19) == | == Lalasepyo (8c & 19) == | ||
[[Comma list]]: {{ | [[Subgroup]]: 2.3.5 | ||
[[Comma list]]: {{monzo| -32 10 7 }} = 4613203125/4294967296 | |||
[[Mapping]]: [{{val| 1 -1 6 }}, {{val| 0 7 -10 }}] | [[Mapping]]: [{{val| 1 -1 6 }}, {{val| 0 7 -10 }}] | ||
Line 115: | Line 119: | ||
== Counterhanson == | == Counterhanson == | ||
{{See also|Ragismic microtemperaments #Counterkleismic}} | {{See also| Ragismic microtemperaments #Counterkleismic }} | ||
[[Subgroup]]: 2.3.5 | |||
[[Comma list]]: {{ | [[Comma list]]: {{monzo| -20 -24 25 }} = 298023223876953125/296148833645101056 | ||
[[Mapping]]: [{{val|1 -5 -4}}, {{val|0 25 | [[Mapping]]: [{{val| 1 -5 -4 }}, {{val| 0 25 2 4}}] | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~6/5 = 316.081 | ||
{{Val list|legend=1| 19, 148, 167, 186, 205, 224, 429, 653, 1082, 1735c }} | {{Val list|legend=1| 19, 148, 167, 186, 205, 224, 429, 653, 1082, 1735c }} | ||
Line 128: | Line 134: | ||
== 19 & 506 == | == 19 & 506 == | ||
[[Comma list]]: {{ | [[Subgroup]]: 2.3.5 | ||
[[Comma list]]: {{monzo| 38 61 -58 }} | |||
[[Mapping]]: [{{val| 1 26 28 }}, {{val| 0 -58 -61 }}] | [[Mapping]]: [{{val| 1 26 28 }}, {{val| 0 -58 -61 }}] | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~{{monzo| -12 -20 19 }} = 505.1394 | ||
{{Val list|legend=1| 19, 468, 487, 506, 1031 }} | {{Val list|legend=1| 19, 468, 487, 506, 1031 }} | ||
Line 141: | Line 149: | ||
== Countermeantone == | == Countermeantone == | ||
[[ | [[Subgroup]]: 2.3.5 | ||
[[ | [[Comma list]]: {{monzo| 10 23 -20 }} = 96402615118848/95367431640625 | ||
[[POTE | [[Mapping]]: [{{val| 1 10 12 }}, {{val| 0 -20 -23 }}] | ||
[[Optimal tuning]] ([[POTE]]): ~104976/78125 = 504.913 | |||
{{Val list|legend=1| 19, 126, 145, 164, 183, 713, 896c, 1079c, 1262c }} | {{Val list|legend=1| 19, 126, 145, 164, 183, 713, 896c, 1079c, 1262c }} | ||
Line 152: | Line 162: | ||
== Mowgli == | == Mowgli == | ||
[[Comma list]]: {{ | [[Subgroup]]: 2.3.5 | ||
[[Comma list]]: {{monzo| 0 22 -15 }} | |||
[[Mapping]]: [{{val| 1 0 0 }}, {{val| 0 15 22 }}] | [[Mapping]]: [{{val| 1 0 0 }}, {{val| 0 15 22 }}] | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~27/25 = 126.7237 | ||
{{Val list|legend=1| 19, 85c, 104c, 123, 142, 161 }} | {{Val list|legend=1| 19, 85c, 104c, 123, 142, 161 }} |
Revision as of 08:48, 31 October 2022
The syntonic-kleismic equivalence continuum (or syntonic-enneadecal equivalence continuum) is a continuum of 5-limit temperaments which equate a number of syntonic commas (81/80) with the 19-comma ([-30 19⟩).
All temperaments in the continuum satisfy (81/80)n ~ [-30 19⟩. Varying n results in different temperaments listed in the table below. It converges to meantone as n approaches infinity. If we allow non-integer and infinite n, the continuum describes the set of all 5-limit temperaments supported by 19edo (due to it being the unique equal temperament that tempers both commas and thus tempers all combinations of them). The just value of n is approximately 6.376…, and temperaments having n near this value tend to be the most accurate ones.
This continuum can also be expressed as the relationship between 81/80 and the enneadeca ([-14 -19 19⟩). That is, (81/80)k ~ [-14 -19 19⟩. In this case, k = 3n - 19.
n | Temperament | Comma | |
---|---|---|---|
Ratio | Monzo | ||
0 | 19 & 19c | 1162261467/1073741824 | [-30 19⟩ |
1 | Lalayo | 71744535/67108864 | [-26 15 1⟩ |
2 | Hogzilla | 4428675/4194304 | [-22 11 2⟩ |
3 | Stump | 273375/262144 | [-18 7 3⟩ |
4 | Negri | 16875/16384 | [-14 3 4⟩ |
5 | Magic | 3125/3072 | [-10 -1 5⟩ |
6 | Hanson | 15625/15552 | [-6 -5 6⟩ |
7 | Sensi | 78732/78125 | [2 9 -7⟩ |
8 | Unicorn | 1594323/1562500 | [-2 13 -8⟩ |
9 | 19 & 51c | 129140163/125000000 | [-6 17 -9⟩ |
… | … | … | … |
∞ | Meantone | 81/80 | [-4 4 -1⟩ |
Examples of temperaments with fractional values of k:
- 19 & 8c (k = 3.5)
- Unsmate (k = 4.5)
- Sycamore (k = 5.5)
- Counterhanson (k = 25/4 = 6.25)
- Enneadecal (k = 19/3 = 6.3)
- Egads (k = 51/8 = 6.375)
- Acrokleismic (k = 32/5 = 6.4)
- 19 & 506 (k = 58/9 = 6.4)
- Parakleismic (k = 6.5)
- Countermeantone (k = 20/3 = 6.6)
- Mowgli (k = 7.5)
Lalayo
Subgroup: 2.3.5
Comma list: [-26 15 1⟩ = 71744535/67108864
Mapping: [⟨1 2 -4], ⟨0 -1 15]]
POTE generator: ~4/3 = 505.348 cents
Badness: 0.803397
Lalasepyo (8c & 19)
Subgroup: 2.3.5
Comma list: [-32 10 7⟩ = 4613203125/4294967296
Mapping: [⟨1 -1 6], ⟨0 7 -10]]
POTE generator: ~675/512 = 442.2674 cents
Badness: 1.061630
The temperament finder - 5-limit 19 & 8c
Counterhanson
Subgroup: 2.3.5
Comma list: [-20 -24 25⟩ = 298023223876953125/296148833645101056
Mapping: [⟨1 -5 -4], ⟨0 25 2 4]]
Optimal tuning (POTE): ~6/5 = 316.081
Badness: 0.317551
19 & 506
Subgroup: 2.3.5
Comma list: [38 61 -58⟩
Mapping: [⟨1 26 28], ⟨0 -58 -61]]
Optimal tuning (POTE): ~[-12 -20 19⟩ = 505.1394
Badness: 2.105450
The temperament finder - 5-limit 19 & 506
Countermeantone
Subgroup: 2.3.5
Comma list: [10 23 -20⟩ = 96402615118848/95367431640625
Mapping: [⟨1 10 12], ⟨0 -20 -23]]
Optimal tuning (POTE): ~104976/78125 = 504.913
Badness: 0.373477
Mowgli
Subgroup: 2.3.5
Comma list: [0 22 -15⟩
Mapping: [⟨1 0 0], ⟨0 15 22]]
Optimal tuning (POTE): ~27/25 = 126.7237
Badness: 0.653871
Oviminor
Subgroup: 2.3.5
Comma list: [-134 -185 184⟩
Mapping: [⟨1 50 51], ⟨0 -184 -185]]
Optimal tuning (CTE): ~6/5 = 315.7501
Badness: 32.0