253edo: Difference between revisions
Jump to navigation
Jump to search
Cleanup and +prime error table |
+infobox, improve intro, +RTT table and rank-2 temperaments, cleanup |
||
Line 1: | Line 1: | ||
{{Infobox ET | |||
| Prime factorization = 11 × 23 | |||
| Step size = 4.74308¢ | |||
| Fifth = 148\253 (701.98¢) | |||
| Semitones = 24:19 (113.83¢ : 90.12¢) | |||
| Consistency = 17 | |||
}} | |||
{{EDO intro|253}} | |||
== Theory == | |||
253edo is [[consistent]] to the [[17-odd-limit]], approximating the fifth by 148\253 (0.021284 cents sharper than the just 3/2), and the prime harmonics from 5 to 17 are all slightly flat. It tempers out [[32805/32768]] in the 5-limit; [[2401/2400]] in the 7-limit; [[385/384]], 1375/1372 and [[4000/3993]] in the 11-limit; [[325/324]], [[1575/1573]] and [[2200/2197]] in the 13-limit; 375/374 and 595/594 in the 17-limit. It provides a good tuning for higher-limit [[sesquiquartififths]] temperament. | |||
253 = 11 × 23, and has subset edos [[11edo]] and [[23edo]]. | 253 = 11 × 23, and has subset edos [[11edo]] and [[23edo]]. | ||
Line 5: | Line 15: | ||
=== Prime harmonics === | === Prime harmonics === | ||
{{Harmonics in equal|253}} | {{Harmonics in equal|253}} | ||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | |||
! rowspan="2" | Subgroup | |||
! rowspan="2" | [[Comma list]] | |||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal 8ve <br>stretch (¢) | |||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.3 | |||
| {{monzo| 401 -253 }} | |||
| [{{val| 253 401 }}] | |||
| -0.007 | |||
| 0.007 | |||
| 0.14 | |||
|- | |||
| 2.3.5 | |||
| 32805/32768, {{monzo| -4 -37 27 }} | |||
| [{{val| 253 401 587 }}] | |||
| +0.300 | |||
| 0.435 | |||
| 9.16 | |||
|- | |||
| 2.3.5.7 | |||
| 2401/2400, 32805/32768, 390625/387072 | |||
| [{{val| 253 401 587 710 }}] | |||
| +0.335 | |||
| 0.381 | |||
| 8.03 | |||
|- | |||
| 2.3.5.7.11 | |||
| 385/384, 1375/1372, 4000/3993, 19712/19683 | |||
| [{{val| 253 401 587 710 875 }}] | |||
| +0.333 | |||
| 0.341 | |||
| 7.19 | |||
|- | |||
| 2.3.5.7.11.13 | |||
| 325/324, 385/384, 1375/1372, 1575/1573, 2200/2197 | |||
| [{{val| 253 401 587 710 875 936 }}] | |||
| +0.323 | |||
| 0.312 | |||
| 6.58 | |||
|- | |||
| 2.3.5.7.11.13.17 | |||
| 325/324, 375/374, 385/384, 595/594, 1275/1274, 2200/2197 | |||
| [{{val| 253 401 587 710 875 936 1034 }}] | |||
| +0.298 | |||
| 0.295 | |||
| 6.22 | |||
|} | |||
=== Rank-2 temperaments === | |||
{| class="wikitable center-all left-5" | |||
|+Table of rank-2 temperaments by generator | |||
! Periods<br>per octave | |||
! Generator<br>(reduced) | |||
! Cents<br>(reduced) | |||
! Associated<br>ratio | |||
! Temperaments | |||
|- | |||
| 1 | |||
| 37\253 | |||
| 175.49 | |||
| 448/405 | |||
| [[Sesquiquartififths]] | |||
|- | |||
| 1 | |||
| 105\253 | |||
| 498.02 | |||
| 4/3 | |||
| [[Helmholtz]] | |||
|- | |||
| 1 | |||
| 123\253 | |||
| 583.40 | |||
| 7/5 | |||
| [[Cotritone]] | |||
|} | |||
== Scales == | == Scales == | ||
* 63 32 63 63 32: [[ | * 63 32 63 63 32: [[3L 2s|Pentic]] | ||
* 43 43 19 43 43 43 19: [[ | * 43 43 19 43 43 43 19: [[Helmholtz]][7] | ||
* 41 41 24 41 41 41 24: [[Meantone | * 41 41 24 41 41 41 24: [[Meantone]][7] | ||
* 35 35 35 35 35 35 35 8: [[ | * 35 35 35 35 35 35 35 8: [[Porcupine]][8] | ||
* 33 33 33 11 33 33 33 33 11: [[23edo|"The Hendecapliqued superdiatonic of the Icositriphony"]] | * 33 33 33 11 33 33 33 33 11: [[23edo|"The Hendecapliqued superdiatonic of the Icositriphony"]] | ||
* 31 31 31 18 31 31 31 31 18: [[ | * 31 31 31 18 31 31 31 31 18: [[Mavila]][9] | ||
* 26 26 15 26 26 26 15 26 26 26 15: [[ | * 26 26 15 26 26 26 15 26 26 26 15: [[Sensi]][11] | ||
* 20 20 20 11 20 20 20 20 11 20 20 20 20 11: [[ | * 20 20 20 11 20 20 20 20 11 20 20 20 20 11: [[11L 3s|Ketradektriatoh scale]] | ||
[[Category:Equal divisions of the octave]] | [[Category:Equal divisions of the octave]] | ||
[[Category:Sesquiquartififths]] | [[Category:Sesquiquartififths]] |
Revision as of 20:02, 2 April 2022
← 252edo | 253edo | 254edo → |
(semiconvergent)
Theory
253edo is consistent to the 17-odd-limit, approximating the fifth by 148\253 (0.021284 cents sharper than the just 3/2), and the prime harmonics from 5 to 17 are all slightly flat. It tempers out 32805/32768 in the 5-limit; 2401/2400 in the 7-limit; 385/384, 1375/1372 and 4000/3993 in the 11-limit; 325/324, 1575/1573 and 2200/2197 in the 13-limit; 375/374 and 595/594 in the 17-limit. It provides a good tuning for higher-limit sesquiquartififths temperament.
253 = 11 × 23, and has subset edos 11edo and 23edo.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | +0.02 | -2.12 | -1.24 | -1.12 | -1.00 | -0.61 | +1.30 | -2.19 | -0.33 | -1.95 |
Relative (%) | +0.0 | +0.4 | -44.8 | -26.1 | -23.6 | -21.1 | -12.8 | +27.4 | -46.1 | -6.9 | -41.2 | |
Steps (reduced) |
253 (0) |
401 (148) |
587 (81) |
710 (204) |
875 (116) |
936 (177) |
1034 (22) |
1075 (63) |
1144 (132) |
1229 (217) |
1253 (241) |
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [401 -253⟩ | [⟨253 401]] | -0.007 | 0.007 | 0.14 |
2.3.5 | 32805/32768, [-4 -37 27⟩ | [⟨253 401 587]] | +0.300 | 0.435 | 9.16 |
2.3.5.7 | 2401/2400, 32805/32768, 390625/387072 | [⟨253 401 587 710]] | +0.335 | 0.381 | 8.03 |
2.3.5.7.11 | 385/384, 1375/1372, 4000/3993, 19712/19683 | [⟨253 401 587 710 875]] | +0.333 | 0.341 | 7.19 |
2.3.5.7.11.13 | 325/324, 385/384, 1375/1372, 1575/1573, 2200/2197 | [⟨253 401 587 710 875 936]] | +0.323 | 0.312 | 6.58 |
2.3.5.7.11.13.17 | 325/324, 375/374, 385/384, 595/594, 1275/1274, 2200/2197 | [⟨253 401 587 710 875 936 1034]] | +0.298 | 0.295 | 6.22 |
Rank-2 temperaments
Periods per octave |
Generator (reduced) |
Cents (reduced) |
Associated ratio |
Temperaments |
---|---|---|---|---|
1 | 37\253 | 175.49 | 448/405 | Sesquiquartififths |
1 | 105\253 | 498.02 | 4/3 | Helmholtz |
1 | 123\253 | 583.40 | 7/5 | Cotritone |
Scales
- 63 32 63 63 32: Pentic
- 43 43 19 43 43 43 19: Helmholtz[7]
- 41 41 24 41 41 41 24: Meantone[7]
- 35 35 35 35 35 35 35 8: Porcupine[8]
- 33 33 33 11 33 33 33 33 11: "The Hendecapliqued superdiatonic of the Icositriphony"
- 31 31 31 18 31 31 31 31 18: Mavila[9]
- 26 26 15 26 26 26 15 26 26 26 15: Sensi[11]
- 20 20 20 11 20 20 20 20 11 20 20 20 20 11: Ketradektriatoh scale