243edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>FREEZE
No edit summary
+prime error table; +links; +category
Line 1: Line 1:
The ''243 equal division'' divides the octave into 243 equal parts of 4.938 cents each. It tempers out the semicomma (5-limit orwell comma) 2109375/2097152 in the 5-limit, and 2401/2400 and 4375/4374 in the 7-limit. In the 11-limit it tempers out 243/242 and 441/440, and provides the [[Optimal_patent_val|optimal patent val]] for [[Ragismic_microtemperaments#Ennealimmal|ennealimnic temperament]]. In the 13-limit it tempers out 364/363 and 625/624, and provides the optimal temperament for 13-limit ennealimnic and the rank three [[Breed_family|jovial temperament]], and in the 17-limit it tempers out 375/374 and 595/594 and provides the optimal patent val for 17-limit ennealimnic.
The '''243 equal division''' divides the octave into 243 equal parts of 4.938 cents each. It tempers out the [[semicomma]] (5-limit orwell comma) 2109375/2097152 in the 5-limit, and [[2401/2400]] and [[4375/4374]] in the 7-limit. In the 11-limit it tempers out [[243/242]] and [[441/440]], and provides the [[optimal patent val]] for the [[Ragismic microtemperaments #Ennealimmal|ennealimnic temperament]]. In the 13-limit it tempers out [[364/363]] and [[625/624]], and provides the optimal temperament for 13-limit ennealimnic and the rank-3 [[Breed family #Jovial|jovial temperament]], and in the 17-limit it tempers out 375/374 and 595/594 and provides the optimal patent val for 17-limit ennealimnic.
 
=== Prime harmonics ===
{{Harmonics in equal|243}}
 
[[Category:Equal divisions of the octave]]

Revision as of 11:54, 4 March 2022

The 243 equal division divides the octave into 243 equal parts of 4.938 cents each. It tempers out the semicomma (5-limit orwell comma) 2109375/2097152 in the 5-limit, and 2401/2400 and 4375/4374 in the 7-limit. In the 11-limit it tempers out 243/242 and 441/440, and provides the optimal patent val for the ennealimnic temperament. In the 13-limit it tempers out 364/363 and 625/624, and provides the optimal temperament for 13-limit ennealimnic and the rank-3 jovial temperament, and in the 17-limit it tempers out 375/374 and 595/594 and provides the optimal patent val for 17-limit ennealimnic.

Prime harmonics

Approximation of prime harmonics in 243edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -0.72 -1.13 -0.92 +1.77 -1.02 -1.25 -1.22 -1.11 -2.42 +0.64
Relative (%) +0.0 -14.6 -22.9 -18.7 +35.8 -20.7 -25.3 -24.6 -22.6 -48.9 +13.0
Steps
(reduced)
243
(0)
385
(142)
564
(78)
682
(196)
841
(112)
899
(170)
993
(21)
1032
(60)
1099
(127)
1180
(208)
1204
(232)