460edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Cmloegcmluin (talk | contribs)
link to new page for Supports
+prime error table; +links; +category
Line 1: Line 1:
The ''460 equal division'' divides the octave into 460 equal parts of 2.609 cents each. It is a very strong 19-limit system and is uniquely [[consistent|consistent]] to the 21-limit. It tempers out the schisma, 32805/32768, in the 5-limit and 4375/4374 and 65536/65625 in the 7-limit, so that it [[support]]s [[Schismatic_family#Pontiac|pontiac temperament]]. In the 11-limit it tempers of 43923/43904, 3025/3024 and 9801/9800; in the 13-limit 1001/1000, 4225/4224 and 10648/10647; in the 17-limit 833/832, 1089/1088, 1225/1224, 1701/1700, 2058/2057, 2431/2430, 2601/2600 and 4914/4913; and in the 19-limit 1331/1330, 1445/1444, 1521/1520, 1540/1539, 1729/1728, 2376/2375, 2926/2925, 3136/3135, 3250/3249 and 4200/4199. It serves as the [[Optimal_patent_val|optimal patent val]] for various temperaments such as the rank five temperament tempering out 833/832 and 1001/1000.
The '''460 equal divisions of the octave''' divides the octave into 460 equal parts of 2.609 cents each.  
 
460edo is a very strong 19-limit system and is uniquely [[consistent]] to the [[21-odd-limit]], with harmonics of 3 to 19 all tuned flat. It tempers out the [[schisma]], 32805/32768, in the 5-limit and [[4375/4374]] and 65536/65625 in the 7-limit, so that it [[support]]s [[pontiac temperament|pontiac]]. In the 11-limit it tempers of 43923/43904, [[3025/3024]] and [[9801/9800]]; in the 13-limit [[1001/1000]], [[4225/4224]] and [[10648/10647]]; in the 17-limit [[833/832]], [[1089/1088]], [[1225/1224]], [[1701/1700]], 2058/2057, 2431/2430, [[2601/2600]] and 4914/4913; and in the 19-limit 1331/1330, [[1445/1444]], [[1521/1520]], 1540/1539, [[1729/1728]], 2376/2375, 2926/2925, 3136/3135, 3250/3249 and 4200/4199. It serves as the [[optimal patent val]] for various temperaments such as the rank five temperament tempering out 833/832 and 1001/1000.
 
=== Prime harmonics ===
{{Harmonics in equal|460}}
 
[[Category:Equal divisions of the octave]]

Revision as of 18:20, 30 January 2022

The 460 equal divisions of the octave divides the octave into 460 equal parts of 2.609 cents each.

460edo is a very strong 19-limit system and is uniquely consistent to the 21-odd-limit, with harmonics of 3 to 19 all tuned flat. It tempers out the schisma, 32805/32768, in the 5-limit and 4375/4374 and 65536/65625 in the 7-limit, so that it supports pontiac. In the 11-limit it tempers of 43923/43904, 3025/3024 and 9801/9800; in the 13-limit 1001/1000, 4225/4224 and 10648/10647; in the 17-limit 833/832, 1089/1088, 1225/1224, 1701/1700, 2058/2057, 2431/2430, 2601/2600 and 4914/4913; and in the 19-limit 1331/1330, 1445/1444, 1521/1520, 1540/1539, 1729/1728, 2376/2375, 2926/2925, 3136/3135, 3250/3249 and 4200/4199. It serves as the optimal patent val for various temperaments such as the rank five temperament tempering out 833/832 and 1001/1000.

Prime harmonics

Approximation of prime harmonics in 460edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -0.22 -0.23 -1.00 -0.88 -0.53 -0.61 -0.12 +0.42 +0.86 +0.18
Relative (%) +0.0 -8.3 -8.7 -38.3 -33.9 -20.2 -23.3 -4.7 +16.2 +32.9 +7.0
Steps
(reduced)
460
(0)
729
(269)
1068
(148)
1291
(371)
1591
(211)
1702
(322)
1880
(40)
1954
(114)
2081
(241)
2235
(395)
2279
(439)