13edf: Difference between revisions
Jump to navigation
Jump to search
Contribution (talk | contribs) →Intervals: 25/24 |
Contribution (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
'''13EDF''' is the [[EDF|equal division of the just perfect fifth]] into 13 parts of 53.9965 [[cent|cents]] each, corresponding to 22.2236 [[edo]]. It is nearly identical to every ninth step of [[200edo]]. | '''13EDF''' is the [[EDF|equal division of the just perfect fifth]] into 13 parts of 53.9965 [[cent|cents]] each, corresponding to 22.2236 [[edo]]. It is nearly identical to every ninth step of [[200edo]]. | ||
It is the smallest representation of [[25/24]] you can get from an equal | It is the smallest representation of [[25/24]] you can get from an equal division of the fifth. | ||
==Intervals== | ==Intervals== |
Revision as of 23:45, 26 December 2021
13EDF is the equal division of the just perfect fifth into 13 parts of 53.9965 cents each, corresponding to 22.2236 edo. It is nearly identical to every ninth step of 200edo.
It is the smallest representation of 25/24 you can get from an equal division of the fifth.
Intervals
degree | cents value | corresponding JI intervals |
comments |
---|---|---|---|
0 | exact 1/1 | ||
1 | 53.9965 | 33/32 | pseudo-25/24 |
2 | 107.9931 | 17/16, 117/110, 16/15 | |
3 | 161.9896 | 11/10 | |
4 | 215.9862 | 17/15 | |
5 | 269.9827 | 7/6 | |
6 | 323.9792 | 77/64 | pseudo-6/5 |
7 | 377.9758 | 56/45 | pseudo-5/4 |
8 | 431.9723 | 9/7 | |
9 | 485.9688 | 45/34 | pseudo-4/3 |
10 | 539.9654 | 15/11 | |
11 | 593.9619 | 55/39, 24/17 | |
12 | 647.9585 | 16/11 | |
13 | 701.9550 | exact 3/2 | just perfect fifth |
14 | 755.9515 | 99/64 | |
15 | 809.9481 | 51/32, 8/5 | |
16 | 863.9446 | 33/20 | |
17 | 917.9412 | 17/10 | |
18 | 971.9377 | 7/4 | |
19 | 1025.9342 | 29/16 | pseudo-9/5 |
20 | 1079.9308 | 28/15 | pseudo-15/8 |
21 | 1133.9273 | 52/27, 27/14 | |
22 | 1187.9238 | 135/68 | pseudo-octave |
23 | 1241.9204 | 45/22 | |
24 | 1295.9169 | 19/9, 36/17 | |
25 | 1349.9135 | 24/11 | |
26 | 1403.9100 | exact 9/4 | pythagorean major ninth |