353edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Eliora (talk | contribs)
Eliora (talk | contribs)
Line 11: Line 11:
In the original Hebrew calendar, years number 3, 6, 8, 11, 14, 17, and 19 within a 19-year pattern (makhzor, plural:makhzorim) are leap. When converted to [[19edo]], this results in [[5L 2s]] mode, and simply the diatonic major scale.  
In the original Hebrew calendar, years number 3, 6, 8, 11, 14, 17, and 19 within a 19-year pattern (makhzor, plural:makhzorim) are leap. When converted to [[19edo]], this results in [[5L 2s]] mode, and simply the diatonic major scale.  


Following this logic, a temperament can be constructed for the Rectified Hebrew calendar (see below), containing 130 notes of the 353edo scale. Hebrew[130] scale has 334\353 as its generator, which is a supermajor seventh, or alternately, 19\353, about a third-tone, since inverting the generator has no effect on the scale. Using such small of a generator helps explore the 353edo's "upside down" side./
Following this logic, a temperament can be constructed for the Rectified Hebrew calendar (see below), containing 130 notes of the 353edo scale. Hebrew[130] scale has 334\353 as its generator, which is a supermajor seventh, or alternately, 19\353, about a third-tone, since inverting the generator has no effect on the scale. Using such small of a generator helps explore the 353edo's "upside down" side.  


In addition, every sub-pattern in a 19-note generator is actually a Hebrew makhzor, that is a mini-19edo on its own, until it is truncated to an 11-note pattern. Just as the original calendar reform consists of 18 makhzorim with 1 hendecaeteris, Hebrew[130] scale consists of a stack of naively 18 "major scales" finished with one 11-edo tetratonic.  
In addition, every sub-pattern in a 19-note generator is actually a Hebrew makhzor, that is a mini-19edo on its own, until it is truncated to an 11-note pattern. Just as the original calendar reform consists of 18 makhzorim with 1 hendecaeteris, Hebrew[130] scale consists of a stack of naively 18 "major scales" finished with one 11-edo tetratonic.  
Such a temperament stretches 19edo so that 15\19 corresponds to [[7/4]]. When measured relative to the generator, the error is less than 1 in 5000.


== Scales ==
== Scales ==
* Hebrew[19] - 18L 1s
* Hebrew[19] - 18L 1s
* 18-Glacial[19] - same as above
* Hebrew[130] - 93L 37s
* Hebrew[130] - 93L 37s



Revision as of 10:05, 23 November 2021

The 353 equal divisions of the octave (353edo) divides the octave into parts of 3.3994 cents each.

Theory

Script error: No such module "primes_in_edo".

From the prime number standpoint, 353edo is suitable for use with 2.7.11.17.23.29.31.37 subgroup. This makes 353edo an "upside-down" EDO – poor approximation of the low harmonics, but an improvement over the high ones. Nonetheless, it provides the optimal patent val for didacus, the 2.5.7 subgroup temperament tempering out 3136/3125.

353edo is the 71st prime EDO.

Relation to a calendar reform

In the original Hebrew calendar, years number 3, 6, 8, 11, 14, 17, and 19 within a 19-year pattern (makhzor, plural:makhzorim) are leap. When converted to 19edo, this results in 5L 2s mode, and simply the diatonic major scale.

Following this logic, a temperament can be constructed for the Rectified Hebrew calendar (see below), containing 130 notes of the 353edo scale. Hebrew[130] scale has 334\353 as its generator, which is a supermajor seventh, or alternately, 19\353, about a third-tone, since inverting the generator has no effect on the scale. Using such small of a generator helps explore the 353edo's "upside down" side.

In addition, every sub-pattern in a 19-note generator is actually a Hebrew makhzor, that is a mini-19edo on its own, until it is truncated to an 11-note pattern. Just as the original calendar reform consists of 18 makhzorim with 1 hendecaeteris, Hebrew[130] scale consists of a stack of naively 18 "major scales" finished with one 11-edo tetratonic.

Such a temperament stretches 19edo so that 15\19 corresponds to 7/4. When measured relative to the generator, the error is less than 1 in 5000.

Scales

  • Hebrew[19] - 18L 1s
  • 18-Glacial[19] - same as above
  • Hebrew[130] - 93L 37s

See also

Links