166edo: Difference between revisions
+intro and prime harmonics table |
+RTT table |
||
Line 10: | Line 10: | ||
=== Prime harmonics === | === Prime harmonics === | ||
{{Primes in edo|166}} | {{Primes in edo|166}} | ||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | |||
! rowspan="2" | Subgroup | |||
! rowspan="2" | [[Comma list]] | |||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal<br>8ve stretch (¢) | |||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.3 | |||
| {{monzo| -263 166 }} | |||
| [{{val| 166 263 }}] | |||
| +0.237 | |||
| 0.237 | |||
| 3.27 | |||
|- | |||
| 2.3.5 | |||
| 1600000/1594323, {{monzo| -31 2 12 }} | |||
| [{{val| 166 263 385 }}] | |||
| +0.615 | |||
| 0.568 | |||
| 7.86 | |||
|- | |||
| 2.3.5.7 | |||
| 225/224, 118098/117649, 1250000/1240029 | |||
| [{{val| 166 263 385 466 }}] | |||
| +0.474 | |||
| 0.549 | |||
| 7.59 | |||
|- | |||
| 2.3.5.7.11 | |||
| 225/224, 385/384, 4000/3993, 322102/321489 | |||
| [{{val| 166 263 385 466 574 }}] | |||
| +0.490 | |||
| 0.492 | |||
| 6.80 | |||
|- | |||
| 2.3.5.7.11.13 | |||
| 225/224, 325/324, 385/384, 1575/1573, 2200/2197 | |||
| [{{val| 166 263 385 466 574 614 }}] | |||
| +0.498 | |||
| 0.449 | |||
| 6.21 | |||
|} | |||
=== Rank-2 temperaments === | |||
{| class="wikitable center-all left-5" | |||
|+Table of rank-2 temperaments by generator | |||
! Periods<br>per octave | |||
! Generator<br>(reduced) | |||
! Cents<br>(reduced) | |||
! Associated<br>ratio | |||
! Temperaments | |||
|- | |||
| 1 | |||
| 33\166 | |||
| 238.55 | |||
| 147/128 | |||
| [[Tokko]] | |||
|- | |||
| 1 | |||
| 47\166 | |||
| 339.76 | |||
| 243/200 | |||
| [[Amity]] / [[houborizic]] | |||
|- | |||
| 1 | |||
| 81\166 | |||
| 585.54 | |||
| 7/5 | |||
| [[Merman]] | |||
|- | |||
| 2 | |||
| 30\166 | |||
| 216.87 | |||
| 17/15 | |||
| [[Wizard]] / gizzard | |||
|} | |||
== Scales == | == Scales == |
Revision as of 11:47, 7 September 2021
The 166 equal divisions of the octave (166edo), or the 166(-tone) equal temperament (166tet, 166et) when viewed from a regular temperament perspective, divides the octave into 166 equal steps of size 7.229 cents each.
Theory
The principle interest of 166edo lies in the usefulness of its approximations; it tempers out 1600000/1594323, 225/224, 385/384, 540/539, 4000/3993, 325/324 and 729/728. It is an excellent tuning for the rank-3 temperament marvel, in both the 11-limit and in the 13-limit extension hecate, and the rank-2 temperament wizard, which also tempers out 4000/3993, giving the optimal patent val for all of these. In the 13-limit it tempers out 325/324, leading to hecate, and 1573/1568, leading to marvell, and tempering out both gives gizzard, the 72&94 temperament, for which 166 is an excellent tuning through the 19-limit.
Its prime factorization is 166 = 2 × 83.
166edo (as 83edo) contains a very good approximation of the harmonic 7th. It is 0.15121 cent flat of the just interval 7:4.
Prime harmonics
Script error: No such module "primes_in_edo".
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-263 166⟩ | [⟨166 263]] | +0.237 | 0.237 | 3.27 |
2.3.5 | 1600000/1594323, [-31 2 12⟩ | [⟨166 263 385]] | +0.615 | 0.568 | 7.86 |
2.3.5.7 | 225/224, 118098/117649, 1250000/1240029 | [⟨166 263 385 466]] | +0.474 | 0.549 | 7.59 |
2.3.5.7.11 | 225/224, 385/384, 4000/3993, 322102/321489 | [⟨166 263 385 466 574]] | +0.490 | 0.492 | 6.80 |
2.3.5.7.11.13 | 225/224, 325/324, 385/384, 1575/1573, 2200/2197 | [⟨166 263 385 466 574 614]] | +0.498 | 0.449 | 6.21 |
Rank-2 temperaments
Periods per octave |
Generator (reduced) |
Cents (reduced) |
Associated ratio |
Temperaments |
---|---|---|---|---|
1 | 33\166 | 238.55 | 147/128 | Tokko |
1 | 47\166 | 339.76 | 243/200 | Amity / houborizic |
1 | 81\166 | 585.54 | 7/5 | Merman |
2 | 30\166 | 216.87 | 17/15 | Wizard / gizzard |