166edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
+intro and prime harmonics table
+RTT table
Line 10: Line 10:
=== Prime harmonics ===
=== Prime harmonics ===
{{Primes in edo|166}}
{{Primes in edo|166}}
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" | Subgroup
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve stretch (¢)
! colspan="2" | Tuning error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
| 2.3
| {{monzo| -263 166 }}
| [{{val| 166 263 }}]
| +0.237
| 0.237
| 3.27
|-
| 2.3.5
| 1600000/1594323, {{monzo| -31 2 12 }}
| [{{val| 166 263 385 }}]
| +0.615
| 0.568
| 7.86
|-
| 2.3.5.7
| 225/224, 118098/117649, 1250000/1240029
| [{{val| 166 263 385 466 }}]
| +0.474
| 0.549
| 7.59
|-
| 2.3.5.7.11
| 225/224, 385/384, 4000/3993, 322102/321489
| [{{val| 166 263 385 466 574 }}]
| +0.490
| 0.492
| 6.80
|-
| 2.3.5.7.11.13
| 225/224, 325/324, 385/384, 1575/1573, 2200/2197
| [{{val| 166 263 385 466 574 614 }}]
| +0.498
| 0.449
| 6.21
|}
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
! Periods<br>per octave
! Generator<br>(reduced)
! Cents<br>(reduced)
! Associated<br>ratio
! Temperaments
|-
| 1
| 33\166
| 238.55
| 147/128
| [[Tokko]]
|-
| 1
| 47\166
| 339.76
| 243/200
| [[Amity]] / [[houborizic]]
|-
| 1
| 81\166
| 585.54
| 7/5
| [[Merman]]
|-
| 2
| 30\166
| 216.87
| 17/15
| [[Wizard]] / gizzard
|}


== Scales ==
== Scales ==

Revision as of 11:47, 7 September 2021

The 166 equal divisions of the octave (166edo), or the 166(-tone) equal temperament (166tet, 166et) when viewed from a regular temperament perspective, divides the octave into 166 equal steps of size 7.229 cents each.

Theory

The principle interest of 166edo lies in the usefulness of its approximations; it tempers out 1600000/1594323, 225/224, 385/384, 540/539, 4000/3993, 325/324 and 729/728. It is an excellent tuning for the rank-3 temperament marvel, in both the 11-limit and in the 13-limit extension hecate, and the rank-2 temperament wizard, which also tempers out 4000/3993, giving the optimal patent val for all of these. In the 13-limit it tempers out 325/324, leading to hecate, and 1573/1568, leading to marvell, and tempering out both gives gizzard, the 72&94 temperament, for which 166 is an excellent tuning through the 19-limit.

Its prime factorization is 166 = 2 × 83.

166edo (as 83edo) contains a very good approximation of the harmonic 7th. It is 0.15121 cent flat of the just interval 7:4.

Prime harmonics

Script error: No such module "primes_in_edo".

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [-263 166 [166 263]] +0.237 0.237 3.27
2.3.5 1600000/1594323, [-31 2 12 [166 263 385]] +0.615 0.568 7.86
2.3.5.7 225/224, 118098/117649, 1250000/1240029 [166 263 385 466]] +0.474 0.549 7.59
2.3.5.7.11 225/224, 385/384, 4000/3993, 322102/321489 [166 263 385 466 574]] +0.490 0.492 6.80
2.3.5.7.11.13 225/224, 325/324, 385/384, 1575/1573, 2200/2197 [166 263 385 466 574 614]] +0.498 0.449 6.21

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per octave
Generator
(reduced)
Cents
(reduced)
Associated
ratio
Temperaments
1 33\166 238.55 147/128 Tokko
1 47\166 339.76 243/200 Amity / houborizic
1 81\166 585.54 7/5 Merman
2 30\166 216.87 17/15 Wizard / gizzard

Scales