|
|
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2> | | <span style="display: block; text-align: right;">[[:de:37edo Deutsch]]</span> |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| |
| : This revision was by author [[User:hstraub|hstraub]] and made on <tt>2016-07-05 04:36:31 UTC</tt>.<br>
| |
| : The original revision id was <tt>586573053</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html"><span style="display: block; text-align: right;">[[xenharmonie/37edo|Deutsch]]
| |
| </span>
| |
| 37edo is a scale derived from dividing the octave into 37 equal steps of approximately 32.43 cents each. It is the 12th [[xenharmonic/prime numbers|prime]] edo, following [[xenharmonic/31edo|31edo]] and coming before [[xenharmonic/41edo|41edo]].
| |
|
| |
|
| Using its best (and sharp) fifth, 37edo tempers out 250/243, making it a variant of [[xenharmonic/porcupine|porcupine]] temperament. (It is the optimal patent val for [[Porcupine family#Porcupinefish|porcupinefish]], which is about as accurate as "13-limit porcupine" will be.) Using its alternative flat fifth, it tempers out 16875/16384, making it a [[xenharmonic/negri|negri]] tuning. It also tempers out 2187/2000, resulting in a temperament where three minor whole tones make up a fifth ([[xenharmonic/gorgo|gorgo]]/[[xenharmonic/laconic|laconic]]). | | 37edo is a scale derived from dividing the octave into 37 equal steps of approximately 32.43 cents each. It is the 12th [[prime_numbers|prime]] edo, following [[31edo|31edo]] and coming before [[41edo|41edo]]. |
| | |
| | Using its best (and sharp) fifth, 37edo tempers out 250/243, making it a variant of [[Porcupine|porcupine]] temperament. (It is the optimal patent val for [[Porcupine_family#Porcupinefish|porcupinefish]], which is about as accurate as "13-limit porcupine" will be.) Using its alternative flat fifth, it tempers out 16875/16384, making it a [[Negri|negri]] tuning. It also tempers out 2187/2000, resulting in a temperament where three minor whole tones make up a fifth ([[Gorgo|gorgo]]/[[laconic|laconic]]). |
|
| |
|
| 37 edo is also a very accurate equal tuning for Undecimation Temperament, which has a generator of about 519 cents; 2 generators lead to 29/16; 3 generators to 32/13; 6 generators to a 10 cent sharp 6/1; 8 generators to a very accurate 11/1 and 10 generators to 20/1. It has a 7L+2s nonatonic MOS, which in 37-edo scale degrees is 0, 1, 6, 11, 16, 17, 22, 27, 32, a scale structure reminiscent of mavila; as well as a 16 note MOS. | | 37 edo is also a very accurate equal tuning for Undecimation Temperament, which has a generator of about 519 cents; 2 generators lead to 29/16; 3 generators to 32/13; 6 generators to a 10 cent sharp 6/1; 8 generators to a very accurate 11/1 and 10 generators to 20/1. It has a 7L+2s nonatonic MOS, which in 37-edo scale degrees is 0, 1, 6, 11, 16, 17, 22, 27, 32, a scale structure reminiscent of mavila; as well as a 16 note MOS. |
| | __FORCETOC__ |
| | ----- |
|
| |
|
| | =Subgroups= |
| | 37edo offers close approximations to [[OverToneSeries|harmonics]] 5, 7, 11, and 13 [and a usable approximation of 9 as well]. |
|
| |
|
| [[toc|flat]]
| | 12\37 = 389.2 cents |
| ----
| |
|
| |
|
| =Subgroups= | | 30\37 = 973.0 cents |
| 37edo offers close approximations to [[xenharmonic/OverToneSeries|harmonics]] 5, 7, 11, and 13 [and a usable approximation of 9 as well].
| |
|
| |
|
| 12\37 = 389.2 cents
| |
| 30\37 = 973.0 cents
| |
| 17\37 = 551.4 cents | | 17\37 = 551.4 cents |
| | |
| 26\37 = 843.2 cents | | 26\37 = 843.2 cents |
| | |
| [6\37edo = 194.6 cents] | | [6\37edo = 194.6 cents] |
|
| |
|
| This means 37 is quite accurate on the 2.5.7.11.13 subgroup, where it shares the same tuning as 111et. In fact, on the larger [[xenharmonic/k*N subgroups|3*37 subgroup]] 2.27.5.7.11.13.51.57 subgroup not only shares the same tuning as 19-limit 111et, it tempers out the same commas. A simpler but less accurate approach is to use the 2*37-subgroup, 2.9.7.11.13.17.19, on which it has the same tuning and commas as 74et. | | This means 37 is quite accurate on the 2.5.7.11.13 subgroup, where it shares the same tuning as 111et. In fact, on the larger [[k*N_subgroups|3*37 subgroup]] 2.27.5.7.11.13.51.57 subgroup not only shares the same tuning as 19-limit 111et, it tempers out the same commas. A simpler but less accurate approach is to use the 2*37-subgroup, 2.9.7.11.13.17.19, on which it has the same tuning and commas as 74et. |
|
| |
|
| =The Two Fifths= | | =The Two Fifths= |
| The just [[xenharmonic/perfect fifth|perfect fifth]] of frequency ratio 3:2 is not well-approximated, and falls between two intervals in 37edo: | | The just [[perfect_fifth|perfect fifth]] of frequency ratio 3:2 is not well-approximated, and falls between two intervals in 37edo: |
|
| |
|
| The flat fifth is 21\37 = 681.1 cents | | The flat fifth is 21\37 = 681.1 cents |
| | |
| The sharp fifth is 22\37 = 713.5 cents | | The sharp fifth is 22\37 = 713.5 cents |
|
| |
|
| 21\37 generates an anti-diatonic, or mavila, scale: 5 5 6 5 5 5 6 | | 21\37 generates an anti-diatonic, or mavila, scale: 5 5 6 5 5 5 6 |
| | |
| "minor third" = 10\37 = 324.3 cents | | "minor third" = 10\37 = 324.3 cents |
| | |
| "major third" = 11\37 = 356.8 cents | | "major third" = 11\37 = 356.8 cents |
|
| |
|
| 22\37 generates an extreme superpythagorean scale: 7 7 1 7 7 7 1 | | 22\37 generates an extreme superpythagorean scale: 7 7 1 7 7 7 1 |
| | |
| "minor third" = 8\37 = 259.5 cents | | "minor third" = 8\37 = 259.5 cents |
| | |
| "major third" = 14\37 = 454.1 cents | | "major third" = 14\37 = 454.1 cents |
|
| |
|
| If the minor third of 259.5 cents is mapped to 7/6, this superpythagorean scale can be thought of as a variant of [[xenharmonic/The Biosphere|Biome]] temperament. | | If the minor third of 259.5 cents is mapped to 7/6, this superpythagorean scale can be thought of as a variant of [[The_Biosphere|Biome]] temperament. |
|
| |
|
| Interestingly, the "major thirds" of both systems are not 12\37 = 389.2¢, the closest approximation to 5/4 available in 37edo. | | Interestingly, the "major thirds" of both systems are not 12\37 = 389.2¢, the closest approximation to 5/4 available in 37edo. |
Line 49: |
Line 49: |
| 37edo has great potential as a near-just xenharmonic system, with high-prime chords such as 8:10:11:13:14 with no perfect fifths available for common terrestrial progressions. The 9/8 approximation is usable but introduces error. One may choose to treat either of the intervals close to 3/2 as 3/2, introducing additional approximations with considerable error (see interval table below). | | 37edo has great potential as a near-just xenharmonic system, with high-prime chords such as 8:10:11:13:14 with no perfect fifths available for common terrestrial progressions. The 9/8 approximation is usable but introduces error. One may choose to treat either of the intervals close to 3/2 as 3/2, introducing additional approximations with considerable error (see interval table below). |
|
| |
|
| =Intervals= | | =Intervals= |
| ||~ Degrees of 37edo ||~ Cents Value ||~ Approximate Ratios | | |
| of 2.5.7.11.13.27 subgroup ||~ Ratios of 3 with | | {| class="wikitable" |
| a sharp 3/2 ||~ Ratios of 3 with | | |- |
| a flat 3/2 ||~ Ratios of 9 with | | ! | Degrees of 37edo |
| 194.59¢ 9/8 ||~ Ratios of 9 with | | ! | Cents Value |
| | ! | Approximate Ratios |
| | |
| | of 2.5.7.11.13.27 subgroup |
| | ! | Ratios of 3 with |
| | |
| | a sharp 3/2 |
| | ! | Ratios of 3 with |
| | |
| | a flat 3/2 |
| | ! | Ratios of 9 with |
| | |
| | 194.59¢ 9/8 |
| | ! | Ratios of 9 with |
| | |
| 227.03¢ 9/8 | | 227.03¢ 9/8 |
| | |
| (two sharp | | (two sharp |
| 3/2's) ||
| |
| || 0 || 0.00 || 1/1 || || || || ||
| |
| || 1 || 32.43 || || || || || ||
| |
| || 2 || 64.86 || 28/27, 27/26 || || || || ||
| |
| || 3 || 97.30 || || || || || ||
| |
| || 4 || 129.73 || 14/13 || 13/12 || 12/11 || || ||
| |
| || 5 || 162.16 || 11/10 || 12/11 || 13/12 || || 10/9 ||
| |
| || 6 || 194.59 || || || || 9/8, 10/9 || ||
| |
| || 7 || 227.03 || 8/7 || || || || 9/8 ||
| |
| || 8 || 259.46 || || 7/6 || || || ||
| |
| || 9 || 291.89 || 13/11, 32/27 || || 6/5, 7/6 || || ||
| |
| || 10 || 324.32 || || 6/5 || || || 11/9 ||
| |
| || 11 || 356.76 || 16/13, 27/22 || || || 11/9 || ||
| |
| || 12 || 389.19 || 5/4 || || || || ||
| |
| || 13 || 421.62 || 14/11 || || || 9/7 || ||
| |
| || 14 || 454.05 || 13/10 || || || || 9/7 ||
| |
| || 15 || 486.49 || || 4/3 || || || ||
| |
| || 16 || 518.92 || 27/20 || || 4/3 || || ||
| |
| || 17 || 551.35 || 11/8 || || || 18/13 || ||
| |
| || 18 || 583.78 || 7/5 || || || || 18/13 ||
| |
| || 19 || 616.22 || 10/7 || || || || 13/9 ||
| |
| || 20 || 648.65 || 16/11 || || || 13/9 || ||
| |
| || 21 || 681.08 || 40/27 || || 3/2 || || ||
| |
| || 22 || 713.51 || || 3/2 || || || ||
| |
| || 23 || 745.95 || 20/13 || || || || 14/9 ||
| |
| || 24 || 778.38 || 11/7 || || || 14/9 || ||
| |
| || 25 || 810.81 || 8/5 || || || || ||
| |
| || 26 || 843.24 || 13/8, 44/27 || || || 18/11 || ||
| |
| || 27 || 875.68 || || 5/3 || || || 18/11 ||
| |
| || 28 || 908.11 || 22/13, 27/16 || || 5/3, 12/7 || || ||
| |
| || 29 || 940.54 || || 12/7 || || || ||
| |
| || 30 || 972.97 || 7/4 || || || || 16/9 ||
| |
| || 31 || 1005.41 || || || || 16/9, 9/5 || ||
| |
| || 32 || 1037.84 || 20/11 || 11/6 || 24/13 || || 9/5 ||
| |
| || 33 || 1070.27 || 13/7 || 24/13 || 11/6 || || ||
| |
| || 34 || 1102.70 || || || || || ||
| |
| || 35 || 1135.14 || 27/14, 52/27 || || || || ||
| |
| || 36 || 1167.57 || || || || || ||
| |
|
| |
|
| =Scales=
| | 3/2's) |
| | |- |
| | | | 0 |
| | | | 0.00 |
| | | | 1/1 |
| | | | |
| | | | |
| | | | |
| | | | |
| | |- |
| | | | 1 |
| | | | 32.43 |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | |- |
| | | | 2 |
| | | | 64.86 |
| | | | 28/27, 27/26 |
| | | | |
| | | | |
| | | | |
| | | | |
| | |- |
| | | | 3 |
| | | | 97.30 |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | |- |
| | | | 4 |
| | | | 129.73 |
| | | | 14/13 |
| | | | 13/12 |
| | | | 12/11 |
| | | | |
| | | | |
| | |- |
| | | | 5 |
| | | | 162.16 |
| | | | 11/10 |
| | | | 12/11 |
| | | | 13/12 |
| | | | |
| | | | 10/9 |
| | |- |
| | | | 6 |
| | | | 194.59 |
| | | | |
| | | | |
| | | | |
| | | | 9/8, 10/9 |
| | | | |
| | |- |
| | | | 7 |
| | | | 227.03 |
| | | | 8/7 |
| | | | |
| | | | |
| | | | |
| | | | 9/8 |
| | |- |
| | | | 8 |
| | | | 259.46 |
| | | | |
| | | | 7/6 |
| | | | |
| | | | |
| | | | |
| | |- |
| | | | 9 |
| | | | 291.89 |
| | | | 13/11, 32/27 |
| | | | |
| | | | 6/5, 7/6 |
| | | | |
| | | | |
| | |- |
| | | | 10 |
| | | | 324.32 |
| | | | |
| | | | 6/5 |
| | | | |
| | | | |
| | | | 11/9 |
| | |- |
| | | | 11 |
| | | | 356.76 |
| | | | 16/13, 27/22 |
| | | | |
| | | | |
| | | | 11/9 |
| | | | |
| | |- |
| | | | 12 |
| | | | 389.19 |
| | | | 5/4 |
| | | | |
| | | | |
| | | | |
| | | | |
| | |- |
| | | | 13 |
| | | | 421.62 |
| | | | 14/11 |
| | | | |
| | | | |
| | | | 9/7 |
| | | | |
| | |- |
| | | | 14 |
| | | | 454.05 |
| | | | 13/10 |
| | | | |
| | | | |
| | | | |
| | | | 9/7 |
| | |- |
| | | | 15 |
| | | | 486.49 |
| | | | |
| | | | 4/3 |
| | | | |
| | | | |
| | | | |
| | |- |
| | | | 16 |
| | | | 518.92 |
| | | | 27/20 |
| | | | |
| | | | 4/3 |
| | | | |
| | | | |
| | |- |
| | | | 17 |
| | | | 551.35 |
| | | | 11/8 |
| | | | |
| | | | |
| | | | 18/13 |
| | | | |
| | |- |
| | | | 18 |
| | | | 583.78 |
| | | | 7/5 |
| | | | |
| | | | |
| | | | |
| | | | 18/13 |
| | |- |
| | | | 19 |
| | | | 616.22 |
| | | | 10/7 |
| | | | |
| | | | |
| | | | |
| | | | 13/9 |
| | |- |
| | | | 20 |
| | | | 648.65 |
| | | | 16/11 |
| | | | |
| | | | |
| | | | 13/9 |
| | | | |
| | |- |
| | | | 21 |
| | | | 681.08 |
| | | | 40/27 |
| | | | |
| | | | 3/2 |
| | | | |
| | | | |
| | |- |
| | | | 22 |
| | | | 713.51 |
| | | | |
| | | | 3/2 |
| | | | |
| | | | |
| | | | |
| | |- |
| | | | 23 |
| | | | 745.95 |
| | | | 20/13 |
| | | | |
| | | | |
| | | | |
| | | | 14/9 |
| | |- |
| | | | 24 |
| | | | 778.38 |
| | | | 11/7 |
| | | | |
| | | | |
| | | | 14/9 |
| | | | |
| | |- |
| | | | 25 |
| | | | 810.81 |
| | | | 8/5 |
| | | | |
| | | | |
| | | | |
| | | | |
| | |- |
| | | | 26 |
| | | | 843.24 |
| | | | 13/8, 44/27 |
| | | | |
| | | | |
| | | | 18/11 |
| | | | |
| | |- |
| | | | 27 |
| | | | 875.68 |
| | | | |
| | | | 5/3 |
| | | | |
| | | | |
| | | | 18/11 |
| | |- |
| | | | 28 |
| | | | 908.11 |
| | | | 22/13, 27/16 |
| | | | |
| | | | 5/3, 12/7 |
| | | | |
| | | | |
| | |- |
| | | | 29 |
| | | | 940.54 |
| | | | |
| | | | 12/7 |
| | | | |
| | | | |
| | | | |
| | |- |
| | | | 30 |
| | | | 972.97 |
| | | | 7/4 |
| | | | |
| | | | |
| | | | |
| | | | 16/9 |
| | |- |
| | | | 31 |
| | | | 1005.41 |
| | | | |
| | | | |
| | | | |
| | | | 16/9, 9/5 |
| | | | |
| | |- |
| | | | 32 |
| | | | 1037.84 |
| | | | 20/11 |
| | | | 11/6 |
| | | | 24/13 |
| | | | |
| | | | 9/5 |
| | |- |
| | | | 33 |
| | | | 1070.27 |
| | | | 13/7 |
| | | | 24/13 |
| | | | 11/6 |
| | | | |
| | | | |
| | |- |
| | | | 34 |
| | | | 1102.70 |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | |- |
| | | | 35 |
| | | | 1135.14 |
| | | | 27/14, 52/27 |
| | | | |
| | | | |
| | | | |
| | | | |
| | |- |
| | | | 36 |
| | | | 1167.57 |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | |} |
|
| |
|
| [[xenharmonic/MOS Scales of 37edo|MOS Scales of 37edo]]
| | =Scales= |
|
| |
|
| [[xenharmonic/roulette6|roulette6]] | | [[MOS_Scales_of_37edo|MOS Scales of 37edo]] |
| [[xenharmonic/roulette7|roulette7]]
| |
| [[xenharmonic/roulette13|roulette13]]
| |
| [[xenharmonic/roulette19|roulette19]]
| |
|
| |
|
| [[xenharmonic/Chromatic pairs#Shoe|Shoe]] | | [[roulette6|roulette6]] |
|
| |
|
| [[xenharmonic/37ED4|37ED4]] | | [[roulette7|roulette7]] |
|
| |
|
| [[xenharmonic/square root of 13 over 10|The Square Root of 13/10]] | | [[roulette13|roulette13]] |
|
| |
|
| =Linear temperaments=
| | [[roulette19|roulette19]] |
| [[List of 37et rank two temperaments by badness]] | |
|
| |
|
| ||~ Generator ||~ "Sharp 3/2" temperaments ||~ "Flat 3/2" temperaments (37b val) ||
| | [[Chromatic_pairs#Shoe|Shoe]] |
| || 1\37 || || ||
| |
| || 2\37 || [[xenharmonic/Sycamore family|Sycamore]] || ||
| |
| || 3\37 || [[xenharmonic/Passion|Passion]] || ||
| |
| || 4\37 || [[xenharmonic/Twothirdtonic|Twothirdtonic]] || [[xenharmonic/Negri|Negri]] ||
| |
| || 5\37 || [[xenharmonic/Porcupine|Porcupine]]/[[xenharmonic/The Biosphere#Oceanfront-Oceanfront%20Children-Porcupinefish|porcupinefish]] || ||
| |
| || 6\37 |||| [[xenharmonic/Chromatic pairs#Roulette|Roulette]] ||
| |
| || 7\37 || [[xenharmonic/Semaja|Semaja]] || [[xenharmonic/Gorgo|Gorgo]]/[[xenharmonic/Laconic|Laconic]] ||
| |
| || 8\37 || || [[semiphore|Semiphore]] ||
| |
| || 9\37 || || ||
| |
| || 10\37 || || ||
| |
| || 11\37 || [[xenharmonic/Beatles|Beatles]] || ||
| |
| || 12\37 || [[xenharmonic/Würschmidt|Würschmidt]] (out-of-tune) || ||
| |
| || 13\37 || || ||
| |
| || 14\37 || [[xenharmonic/Ammonite|Ammonite]] || ||
| |
| || 15\37 || [[The Biosphere#Oceanfront-Oceanfront%20Children-Ultrapyth|Ultrapyth]], **not** [[xenharmonic/superpyth|superpyth]] || ||
| |
| || 16\37 || || **Not** [[xenharmonic/mavila|mavila]] (this is "undecimation") ||
| |
| || 17\37 || [[xenharmonic/Emka|Emka]] || ||
| |
| || 18\37 || || ||
| |
|
| |
|
| | [[37ED4|37ED4]] |
|
| |
|
| =Music in 37edo=
| | [[square_root_of_13_over_10|The Square Root of 13/10]] |
| [[http://www.akjmusic.com/audio/toccata_bianca_37edo.mp3|Toccata Bianca 37edo]] by [[http://www.akjmusic.com/|Aaron Krister Johnson]] | |
| [[@http://andrewheathwaite.bandcamp.com/track/shorn-brown|Shorn Brown]] [[http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2002%20Shorn%20Brown.mp3|play]] and [[@http://andrewheathwaite.bandcamp.com/track/jellybear|Jellybear]] [[http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2003%20Jellybear.mp3|play]] by [[xenharmonic/Andrew Heathwaite|Andrew Heathwaite]]
| |
| [[http://micro.soonlabel.com/gene_ward_smith/Others/Monzo/monzo_kog-sisters_2014-0405.mp3|The Kog Sisters]] by [[Joe Monzo]]
| |
|
| |
|
| =Links= | | =Linear temperaments= |
| [[http://tonalsoft.com/enc/number/37-edo/37edo.aspx|37edo at Tonalsoft]]</pre></div> | | [[List_of_37et_rank_two_temperaments_by_badness|List of 37et rank two temperaments by badness]] |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>37edo</title></head><body><span style="display: block; text-align: right;"><a class="wiki_link" href="http://xenharmonie.wikispaces.com/37edo">Deutsch</a><br />
| |
| </span><br />
| |
| 37edo is a scale derived from dividing the octave into 37 equal steps of approximately 32.43 cents each. It is the 12th <a class="wiki_link" href="http://xenharmonic.wikispaces.com/prime%20numbers">prime</a> edo, following <a class="wiki_link" href="http://xenharmonic.wikispaces.com/31edo">31edo</a> and coming before <a class="wiki_link" href="http://xenharmonic.wikispaces.com/41edo">41edo</a>.<br />
| |
| <br />
| |
| Using its best (and sharp) fifth, 37edo tempers out 250/243, making it a variant of <a class="wiki_link" href="http://xenharmonic.wikispaces.com/porcupine">porcupine</a> temperament. (It is the optimal patent val for <a class="wiki_link" href="/Porcupine%20family#Porcupinefish">porcupinefish</a>, which is about as accurate as &quot;13-limit porcupine&quot; will be.) Using its alternative flat fifth, it tempers out 16875/16384, making it a <a class="wiki_link" href="http://xenharmonic.wikispaces.com/negri">negri</a> tuning. It also tempers out 2187/2000, resulting in a temperament where three minor whole tones make up a fifth (<a class="wiki_link" href="http://xenharmonic.wikispaces.com/gorgo">gorgo</a>/<a class="wiki_link" href="http://xenharmonic.wikispaces.com/laconic">laconic</a>).<br />
| |
| <br />
| |
| 37 edo is also a very accurate equal tuning for Undecimation Temperament, which has a generator of about 519 cents; 2 generators lead to 29/16; 3 generators to 32/13; 6 generators to a 10 cent sharp 6/1; 8 generators to a very accurate 11/1 and 10 generators to 20/1. It has a 7L+2s nonatonic MOS, which in 37-edo scale degrees is 0, 1, 6, 11, 16, 17, 22, 27, 32, a scale structure reminiscent of mavila; as well as a 16 note MOS.<br />
| |
| <br />
| |
| <br />
| |
| <!-- ws:start:WikiTextTocRule:14:&lt;img id=&quot;wikitext@@toc@@flat&quot; class=&quot;WikiMedia WikiMediaTocFlat&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/flat?w=100&amp;h=16&quot;/&gt; --><!-- ws:end:WikiTextTocRule:14 --><!-- ws:start:WikiTextTocRule:15: --><a href="#Subgroups">Subgroups</a><!-- ws:end:WikiTextTocRule:15 --><!-- ws:start:WikiTextTocRule:16: --> | <a href="#The Two Fifths">The Two Fifths</a><!-- ws:end:WikiTextTocRule:16 --><!-- ws:start:WikiTextTocRule:17: --> | <a href="#Intervals">Intervals</a><!-- ws:end:WikiTextTocRule:17 --><!-- ws:start:WikiTextTocRule:18: --> | <a href="#Scales">Scales</a><!-- ws:end:WikiTextTocRule:18 --><!-- ws:start:WikiTextTocRule:19: --> | <a href="#Linear temperaments">Linear temperaments</a><!-- ws:end:WikiTextTocRule:19 --><!-- ws:start:WikiTextTocRule:20: --> | <a href="#Music in 37edo">Music in 37edo</a><!-- ws:end:WikiTextTocRule:20 --><!-- ws:start:WikiTextTocRule:21: --> | <a href="#Links">Links</a><!-- ws:end:WikiTextTocRule:21 --><!-- ws:start:WikiTextTocRule:22: -->
| |
| <!-- ws:end:WikiTextTocRule:22 --><hr />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Subgroups"></a><!-- ws:end:WikiTextHeadingRule:0 -->Subgroups</h1>
| |
| 37edo offers close approximations to <a class="wiki_link" href="http://xenharmonic.wikispaces.com/OverToneSeries">harmonics</a> 5, 7, 11, and 13 [and a usable approximation of 9 as well].<br />
| |
| <br />
| |
| 12\37 = 389.2 cents<br />
| |
| 30\37 = 973.0 cents<br />
| |
| 17\37 = 551.4 cents<br />
| |
| 26\37 = 843.2 cents<br />
| |
| [6\37edo = 194.6 cents]<br />
| |
| <br />
| |
| This means 37 is quite accurate on the 2.5.7.11.13 subgroup, where it shares the same tuning as 111et. In fact, on the larger <a class="wiki_link" href="http://xenharmonic.wikispaces.com/k%2AN%20subgroups">3*37 subgroup</a> 2.27.5.7.11.13.51.57 subgroup not only shares the same tuning as 19-limit 111et, it tempers out the same commas. A simpler but less accurate approach is to use the 2*37-subgroup, 2.9.7.11.13.17.19, on which it has the same tuning and commas as 74et.<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="The Two Fifths"></a><!-- ws:end:WikiTextHeadingRule:2 -->The Two Fifths</h1>
| |
| The just <a class="wiki_link" href="http://xenharmonic.wikispaces.com/perfect%20fifth">perfect fifth</a> of frequency ratio 3:2 is not well-approximated, and falls between two intervals in 37edo:<br />
| |
| <br />
| |
| The flat fifth is 21\37 = 681.1 cents<br />
| |
| The sharp fifth is 22\37 = 713.5 cents<br />
| |
| <br />
| |
| 21\37 generates an anti-diatonic, or mavila, scale: 5 5 6 5 5 5 6<br />
| |
| &quot;minor third&quot; = 10\37 = 324.3 cents<br />
| |
| &quot;major third&quot; = 11\37 = 356.8 cents<br />
| |
| <br />
| |
| 22\37 generates an extreme superpythagorean scale: 7 7 1 7 7 7 1<br />
| |
| &quot;minor third&quot; = 8\37 = 259.5 cents<br />
| |
| &quot;major third&quot; = 14\37 = 454.1 cents<br />
| |
| <br />
| |
| If the minor third of 259.5 cents is mapped to 7/6, this superpythagorean scale can be thought of as a variant of <a class="wiki_link" href="http://xenharmonic.wikispaces.com/The%20Biosphere">Biome</a> temperament.<br />
| |
| <br />
| |
| Interestingly, the &quot;major thirds&quot; of both systems are not 12\37 = 389.2¢, the closest approximation to 5/4 available in 37edo.<br />
| |
| <br />
| |
| 37edo has great potential as a near-just xenharmonic system, with high-prime chords such as 8:10:11:13:14 with no perfect fifths available for common terrestrial progressions. The 9/8 approximation is usable but introduces error. One may choose to treat either of the intervals close to 3/2 as 3/2, introducing additional approximations with considerable error (see interval table below).<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><a name="Intervals"></a><!-- ws:end:WikiTextHeadingRule:4 -->Intervals</h1>
| |
|
| |
|
| |
|
| <table class="wiki_table">
| | {| class="wikitable" |
| <tr>
| | |- |
| <th>Degrees of 37edo<br />
| | ! | Generator |
| </th>
| | ! | "Sharp 3/2" temperaments |
| <th>Cents Value<br />
| | ! | "Flat 3/2" temperaments (37b val) |
| </th>
| | |- |
| <th>Approximate Ratios<br />
| | | | 1\37 |
| of 2.5.7.11.13.27 subgroup<br />
| | | | |
| </th>
| | | | |
| <th>Ratios of 3 with<br />
| | |- |
| a sharp 3/2<br />
| | | | 2\37 |
| </th>
| | | | [[Sycamore_family|Sycamore]] |
| <th>Ratios of 3 with<br />
| | | | |
| a flat 3/2<br />
| | |- |
| </th>
| | | | 3\37 |
| <th>Ratios of 9 with<br />
| | | | [[Passion|Passion]] |
| 194.59¢ 9/8<br />
| | | | |
| </th>
| | |- |
| <th>Ratios of 9 with<br />
| | | | 4\37 |
| 227.03¢ 9/8<br />
| | | | [[Twothirdtonic|Twothirdtonic]] |
| (two sharp<br /> | | | | [[Negri|Negri]] |
| 3/2's)<br />
| | |- |
| </th>
| | | | 5\37 |
| </tr>
| | | | [[Porcupine|Porcupine]]/[[The_Biosphere#Oceanfront-Oceanfront Children-Porcupinefish|porcupinefish]] |
| <tr>
| | | | |
| <td>0<br />
| | |- |
| </td>
| | | | 6\37 |
| <td>0.00<br />
| | | colspan="2" | [[Chromatic_pairs#Roulette|Roulette]] |
| </td>
| | |- |
| <td>1/1<br />
| | | | 7\37 |
| </td>
| | | | [[Semaja|Semaja]] |
| <td><br />
| | | | [[Gorgo|Gorgo]]/[[Laconic|Laconic]] |
| </td>
| | |- |
| <td><br />
| | | | 8\37 |
| </td>
| | | | |
| <td><br />
| | | | [[semiphore|Semiphore]] |
| </td>
| | |- |
| <td><br />
| | | | 9\37 |
| </td>
| | | | |
| </tr>
| | | | |
| <tr>
| | |- |
| <td>1<br />
| | | | 10\37 |
| </td>
| | | | |
| <td>32.43<br />
| | | | |
| </td>
| | |- |
| <td><br />
| | | | 11\37 |
| </td>
| | | | [[Beatles|Beatles]] |
| <td><br />
| | | | |
| </td>
| | |- |
| <td><br />
| | | | 12\37 |
| </td>
| | | | [[Würschmidt|Würschmidt]] (out-of-tune) |
| <td><br />
| | | | |
| </td>
| | |- |
| <td><br />
| | | | 13\37 |
| </td>
| | | | |
| </tr>
| | | | |
| <tr>
| | |- |
| <td>2<br />
| | | | 14\37 |
| </td>
| | | | [[Ammonite|Ammonite]] |
| <td>64.86<br />
| | | | |
| </td>
| | |- |
| <td>28/27, 27/26<br />
| | | | 15\37 |
| </td>
| | | | [[The_Biosphere#Oceanfront-Oceanfront Children-Ultrapyth|Ultrapyth]], '''not''' [[Superpyth|superpyth]] |
| <td><br />
| | | | |
| </td>
| | |- |
| <td><br />
| | | | 16\37 |
| </td>
| | | | |
| <td><br />
| | | | '''Not''' [[Mavila|mavila]] (this is "undecimation") |
| </td>
| | |- |
| <td><br />
| | | | 17\37 |
| </td>
| | | | [[Emka|Emka]] |
| </tr>
| | | | |
| <tr>
| | |- |
| <td>3<br />
| | | | 18\37 |
| </td>
| | | | |
| <td>97.30<br />
| | | | |
| </td>
| | |} |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4<br />
| |
| </td>
| |
| <td>129.73<br />
| |
| </td>
| |
| <td>14/13<br />
| |
| </td>
| |
| <td>13/12<br />
| |
| </td>
| |
| <td>12/11<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5<br />
| |
| </td>
| |
| <td>162.16<br />
| |
| </td>
| |
| <td>11/10<br />
| |
| </td>
| |
| <td>12/11<br />
| |
| </td>
| |
| <td>13/12<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>10/9<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6<br />
| |
| </td>
| |
| <td>194.59<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>9/8, 10/9<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>7<br />
| |
| </td>
| |
| <td>227.03<br />
| |
| </td>
| |
| <td>8/7<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>9/8<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>8<br />
| |
| </td>
| |
| <td>259.46<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>7/6<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>9<br />
| |
| </td>
| |
| <td>291.89<br />
| |
| </td>
| |
| <td>13/11, 32/27<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>6/5, 7/6<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>10<br />
| |
| </td>
| |
| <td>324.32<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>6/5<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>11/9<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>11<br />
| |
| </td>
| |
| <td>356.76<br />
| |
| </td>
| |
| <td>16/13, 27/22<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>11/9<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>12<br />
| |
| </td>
| |
| <td>389.19<br />
| |
| </td>
| |
| <td>5/4<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>13<br />
| |
| </td>
| |
| <td>421.62<br />
| |
| </td>
| |
| <td>14/11<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>9/7<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>14<br />
| |
| </td>
| |
| <td>454.05<br />
| |
| </td>
| |
| <td>13/10<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>9/7<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>15<br />
| |
| </td>
| |
| <td>486.49<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>4/3<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>16<br />
| |
| </td>
| |
| <td>518.92<br />
| |
| </td>
| |
| <td>27/20<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>4/3<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>17<br />
| |
| </td>
| |
| <td>551.35<br />
| |
| </td>
| |
| <td>11/8<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>18/13<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>18<br />
| |
| </td>
| |
| <td>583.78<br />
| |
| </td>
| |
| <td>7/5<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>18/13<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>19<br />
| |
| </td>
| |
| <td>616.22<br />
| |
| </td>
| |
| <td>10/7<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>13/9<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>20<br />
| |
| </td>
| |
| <td>648.65<br />
| |
| </td>
| |
| <td>16/11<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>13/9<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>21<br />
| |
| </td>
| |
| <td>681.08<br />
| |
| </td>
| |
| <td>40/27<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>3/2<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>22<br />
| |
| </td>
| |
| <td>713.51<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>3/2<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>23<br />
| |
| </td>
| |
| <td>745.95<br />
| |
| </td>
| |
| <td>20/13<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>14/9<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>24<br />
| |
| </td>
| |
| <td>778.38<br />
| |
| </td>
| |
| <td>11/7<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>14/9<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>25<br />
| |
| </td>
| |
| <td>810.81<br />
| |
| </td>
| |
| <td>8/5<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>26<br />
| |
| </td>
| |
| <td>843.24<br />
| |
| </td>
| |
| <td>13/8, 44/27<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>18/11<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>27<br />
| |
| </td>
| |
| <td>875.68<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5/3<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>18/11<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>28<br />
| |
| </td>
| |
| <td>908.11<br />
| |
| </td>
| |
| <td>22/13, 27/16<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5/3, 12/7<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>29<br />
| |
| </td>
| |
| <td>940.54<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>12/7<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>30<br />
| |
| </td>
| |
| <td>972.97<br />
| |
| </td>
| |
| <td>7/4<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>16/9<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>31<br />
| |
| </td>
| |
| <td>1005.41<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>16/9, 9/5<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>32<br />
| |
| </td>
| |
| <td>1037.84<br />
| |
| </td>
| |
| <td>20/11<br />
| |
| </td>
| |
| <td>11/6<br />
| |
| </td>
| |
| <td>24/13<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>9/5<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>33<br />
| |
| </td>
| |
| <td>1070.27<br />
| |
| </td>
| |
| <td>13/7<br />
| |
| </td>
| |
| <td>24/13<br />
| |
| </td>
| |
| <td>11/6<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>34<br />
| |
| </td>
| |
| <td>1102.70<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>35<br />
| |
| </td>
| |
| <td>1135.14<br />
| |
| </td>
| |
| <td>27/14, 52/27<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>36<br />
| |
| </td>
| |
| <td>1167.57<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| <br />
| | =Music in 37edo= |
| <!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="Scales"></a><!-- ws:end:WikiTextHeadingRule:6 -->Scales</h1>
| | [http://www.akjmusic.com/audio/toccata_bianca_37edo.mp3 Toccata Bianca 37edo] by [http://www.akjmusic.com/ Aaron Krister Johnson] |
| <br />
| |
| <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOS%20Scales%20of%2037edo">MOS Scales of 37edo</a><br />
| |
| <br />
| |
| <a class="wiki_link" href="http://xenharmonic.wikispaces.com/roulette6">roulette6</a><br />
| |
| <a class="wiki_link" href="http://xenharmonic.wikispaces.com/roulette7">roulette7</a><br />
| |
| <a class="wiki_link" href="http://xenharmonic.wikispaces.com/roulette13">roulette13</a><br />
| |
| <a class="wiki_link" href="http://xenharmonic.wikispaces.com/roulette19">roulette19</a><br />
| |
| <br />
| |
| <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Chromatic%20pairs#Shoe">Shoe</a><br />
| |
| <br />
| |
| <a class="wiki_link" href="http://xenharmonic.wikispaces.com/37ED4">37ED4</a><br />
| |
| <br />
| |
| <a class="wiki_link" href="http://xenharmonic.wikispaces.com/square%20root%20of%2013%20over%2010">The Square Root of 13/10</a><br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:8:&lt;h1&gt; --><h1 id="toc4"><a name="Linear temperaments"></a><!-- ws:end:WikiTextHeadingRule:8 -->Linear temperaments</h1>
| |
| <a class="wiki_link" href="/List%20of%2037et%20rank%20two%20temperaments%20by%20badness">List of 37et rank two temperaments by badness</a><br />
| |
| <br />
| |
|
| |
|
| | [http://andrewheathwaite.bandcamp.com/track/shorn-brown Shorn Brown] [http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2002%20Shorn%20Brown.mp3 play] and [http://andrewheathwaite.bandcamp.com/track/jellybear Jellybear] [http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2003%20Jellybear.mp3 play] by [[Andrew_Heathwaite|Andrew Heathwaite]] |
|
| |
|
| <table class="wiki_table">
| | [http://micro.soonlabel.com/gene_ward_smith/Others/Monzo/monzo_kog-sisters_2014-0405.mp3 The Kog Sisters] by [[Joe_Monzo|Joe Monzo]] |
| <tr>
| |
| <th>Generator<br />
| |
| </th>
| |
| <th>&quot;Sharp 3/2&quot; temperaments<br />
| |
| </th>
| |
| <th>&quot;Flat 3/2&quot; temperaments (37b val)<br />
| |
| </th>
| |
| </tr>
| |
| <tr>
| |
| <td>1\37<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2\37<br />
| |
| </td>
| |
| <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Sycamore%20family">Sycamore</a><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3\37<br />
| |
| </td>
| |
| <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Passion">Passion</a><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4\37<br />
| |
| </td>
| |
| <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Twothirdtonic">Twothirdtonic</a><br />
| |
| </td>
| |
| <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Negri">Negri</a><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5\37<br />
| |
| </td>
| |
| <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Porcupine">Porcupine</a>/<a class="wiki_link" href="http://xenharmonic.wikispaces.com/The%20Biosphere#Oceanfront-Oceanfront%20Children-Porcupinefish">porcupinefish</a><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6\37<br />
| |
| </td>
| |
| <td colspan="2"><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Chromatic%20pairs#Roulette">Roulette</a><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>7\37<br />
| |
| </td>
| |
| <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Semaja">Semaja</a><br />
| |
| </td>
| |
| <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Gorgo">Gorgo</a>/<a class="wiki_link" href="http://xenharmonic.wikispaces.com/Laconic">Laconic</a><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>8\37<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><a class="wiki_link" href="/semiphore">Semiphore</a><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>9\37<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>10\37<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>11\37<br />
| |
| </td>
| |
| <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Beatles">Beatles</a><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>12\37<br />
| |
| </td>
| |
| <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/W%C3%BCrschmidt">Würschmidt</a> (out-of-tune)<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>13\37<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>14\37<br />
| |
| </td>
| |
| <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Ammonite">Ammonite</a><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>15\37<br />
| |
| </td>
| |
| <td><a class="wiki_link" href="/The%20Biosphere#Oceanfront-Oceanfront%20Children-Ultrapyth">Ultrapyth</a>, <strong>not</strong> <a class="wiki_link" href="http://xenharmonic.wikispaces.com/superpyth">superpyth</a><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>16\37<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><strong>Not</strong> <a class="wiki_link" href="http://xenharmonic.wikispaces.com/mavila">mavila</a> (this is &quot;undecimation&quot;)<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>17\37<br />
| |
| </td>
| |
| <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Emka">Emka</a><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>18\37<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| <br />
| | =Links= |
| <br />
| | [http://tonalsoft.com/enc/number/37-edo/37edo.aspx 37edo at Tonalsoft] [[Category:37edo]] |
| <!-- ws:start:WikiTextHeadingRule:10:&lt;h1&gt; --><h1 id="toc5"><a name="Music in 37edo"></a><!-- ws:end:WikiTextHeadingRule:10 -->Music in 37edo</h1>
| | [[Category:edo]] |
| <a class="wiki_link_ext" href="http://www.akjmusic.com/audio/toccata_bianca_37edo.mp3" rel="nofollow">Toccata Bianca 37edo</a> by <a class="wiki_link_ext" href="http://www.akjmusic.com/" rel="nofollow">Aaron Krister Johnson</a><br />
| | [[Category:prime_edo]] |
| <a class="wiki_link_ext" href="http://andrewheathwaite.bandcamp.com/track/shorn-brown" rel="nofollow" target="_blank">Shorn Brown</a> <a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2002%20Shorn%20Brown.mp3" rel="nofollow">play</a> and <a class="wiki_link_ext" href="http://andrewheathwaite.bandcamp.com/track/jellybear" rel="nofollow" target="_blank">Jellybear</a> <a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2003%20Jellybear.mp3" rel="nofollow">play</a> by <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Andrew%20Heathwaite">Andrew Heathwaite</a><br />
| | [[Category:subgroup]] |
| <a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Monzo/monzo_kog-sisters_2014-0405.mp3" rel="nofollow">The Kog Sisters</a> by <a class="wiki_link" href="/Joe%20Monzo">Joe Monzo</a><br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:12:&lt;h1&gt; --><h1 id="toc6"><a name="Links"></a><!-- ws:end:WikiTextHeadingRule:12 -->Links</h1>
| |
| <a class="wiki_link_ext" href="http://tonalsoft.com/enc/number/37-edo/37edo.aspx" rel="nofollow">37edo at Tonalsoft</a></body></html></pre></div>
| |
de:37edo Deutsch
37edo is a scale derived from dividing the octave into 37 equal steps of approximately 32.43 cents each. It is the 12th prime edo, following 31edo and coming before 41edo.
Using its best (and sharp) fifth, 37edo tempers out 250/243, making it a variant of porcupine temperament. (It is the optimal patent val for porcupinefish, which is about as accurate as "13-limit porcupine" will be.) Using its alternative flat fifth, it tempers out 16875/16384, making it a negri tuning. It also tempers out 2187/2000, resulting in a temperament where three minor whole tones make up a fifth (gorgo/laconic).
37 edo is also a very accurate equal tuning for Undecimation Temperament, which has a generator of about 519 cents; 2 generators lead to 29/16; 3 generators to 32/13; 6 generators to a 10 cent sharp 6/1; 8 generators to a very accurate 11/1 and 10 generators to 20/1. It has a 7L+2s nonatonic MOS, which in 37-edo scale degrees is 0, 1, 6, 11, 16, 17, 22, 27, 32, a scale structure reminiscent of mavila; as well as a 16 note MOS.
Subgroups
37edo offers close approximations to harmonics 5, 7, 11, and 13 [and a usable approximation of 9 as well].
12\37 = 389.2 cents
30\37 = 973.0 cents
17\37 = 551.4 cents
26\37 = 843.2 cents
[6\37edo = 194.6 cents]
This means 37 is quite accurate on the 2.5.7.11.13 subgroup, where it shares the same tuning as 111et. In fact, on the larger 3*37 subgroup 2.27.5.7.11.13.51.57 subgroup not only shares the same tuning as 19-limit 111et, it tempers out the same commas. A simpler but less accurate approach is to use the 2*37-subgroup, 2.9.7.11.13.17.19, on which it has the same tuning and commas as 74et.
The Two Fifths
The just perfect fifth of frequency ratio 3:2 is not well-approximated, and falls between two intervals in 37edo:
The flat fifth is 21\37 = 681.1 cents
The sharp fifth is 22\37 = 713.5 cents
21\37 generates an anti-diatonic, or mavila, scale: 5 5 6 5 5 5 6
"minor third" = 10\37 = 324.3 cents
"major third" = 11\37 = 356.8 cents
22\37 generates an extreme superpythagorean scale: 7 7 1 7 7 7 1
"minor third" = 8\37 = 259.5 cents
"major third" = 14\37 = 454.1 cents
If the minor third of 259.5 cents is mapped to 7/6, this superpythagorean scale can be thought of as a variant of Biome temperament.
Interestingly, the "major thirds" of both systems are not 12\37 = 389.2¢, the closest approximation to 5/4 available in 37edo.
37edo has great potential as a near-just xenharmonic system, with high-prime chords such as 8:10:11:13:14 with no perfect fifths available for common terrestrial progressions. The 9/8 approximation is usable but introduces error. One may choose to treat either of the intervals close to 3/2 as 3/2, introducing additional approximations with considerable error (see interval table below).
Intervals
Degrees of 37edo
|
Cents Value
|
Approximate Ratios
of 2.5.7.11.13.27 subgroup
|
Ratios of 3 with
a sharp 3/2
|
Ratios of 3 with
a flat 3/2
|
Ratios of 9 with
194.59¢ 9/8
|
Ratios of 9 with
227.03¢ 9/8
(two sharp
3/2's)
|
0
|
0.00
|
1/1
|
|
|
|
|
1
|
32.43
|
|
|
|
|
|
2
|
64.86
|
28/27, 27/26
|
|
|
|
|
3
|
97.30
|
|
|
|
|
|
4
|
129.73
|
14/13
|
13/12
|
12/11
|
|
|
5
|
162.16
|
11/10
|
12/11
|
13/12
|
|
10/9
|
6
|
194.59
|
|
|
|
9/8, 10/9
|
|
7
|
227.03
|
8/7
|
|
|
|
9/8
|
8
|
259.46
|
|
7/6
|
|
|
|
9
|
291.89
|
13/11, 32/27
|
|
6/5, 7/6
|
|
|
10
|
324.32
|
|
6/5
|
|
|
11/9
|
11
|
356.76
|
16/13, 27/22
|
|
|
11/9
|
|
12
|
389.19
|
5/4
|
|
|
|
|
13
|
421.62
|
14/11
|
|
|
9/7
|
|
14
|
454.05
|
13/10
|
|
|
|
9/7
|
15
|
486.49
|
|
4/3
|
|
|
|
16
|
518.92
|
27/20
|
|
4/3
|
|
|
17
|
551.35
|
11/8
|
|
|
18/13
|
|
18
|
583.78
|
7/5
|
|
|
|
18/13
|
19
|
616.22
|
10/7
|
|
|
|
13/9
|
20
|
648.65
|
16/11
|
|
|
13/9
|
|
21
|
681.08
|
40/27
|
|
3/2
|
|
|
22
|
713.51
|
|
3/2
|
|
|
|
23
|
745.95
|
20/13
|
|
|
|
14/9
|
24
|
778.38
|
11/7
|
|
|
14/9
|
|
25
|
810.81
|
8/5
|
|
|
|
|
26
|
843.24
|
13/8, 44/27
|
|
|
18/11
|
|
27
|
875.68
|
|
5/3
|
|
|
18/11
|
28
|
908.11
|
22/13, 27/16
|
|
5/3, 12/7
|
|
|
29
|
940.54
|
|
12/7
|
|
|
|
30
|
972.97
|
7/4
|
|
|
|
16/9
|
31
|
1005.41
|
|
|
|
16/9, 9/5
|
|
32
|
1037.84
|
20/11
|
11/6
|
24/13
|
|
9/5
|
33
|
1070.27
|
13/7
|
24/13
|
11/6
|
|
|
34
|
1102.70
|
|
|
|
|
|
35
|
1135.14
|
27/14, 52/27
|
|
|
|
|
36
|
1167.57
|
|
|
|
|
|
Scales
MOS Scales of 37edo
roulette6
roulette7
roulette13
roulette19
Shoe
37ED4
The Square Root of 13/10
Linear temperaments
List of 37et rank two temperaments by badness
Music in 37edo
Toccata Bianca 37edo by Aaron Krister Johnson
Shorn Brown play and Jellybear play by Andrew Heathwaite
The Kog Sisters by Joe Monzo
Links
37edo at Tonalsoft