Quartismic family: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Remove non-existent extensions; various corrections (e.g. meanquarter can't be extended (recte tempered) to godzilla, also those are individual temperaments not clans)
m Edo lists reviewed
Line 17: Line 17:
[[POTE generator]]s: ~3/2 = 701.9826, ~5/4 = 386.3427, ~33/32 = 53.3748
[[POTE generator]]s: ~3/2 = 701.9826, ~5/4 = 386.3427, ~33/32 = 53.3748


{{Val list|legend=1| 21, 22, 24, 25, 43, 45, 46, 67, 68, 89, 90, 91, 92, 110, 111, 113, 114, 132, 134, 135, 138, 156, 157, 159, 178, 179, 180, 181, 202, 224, 270, 313, 359, 494, 629, 653, 742, 877, 1012, 1236, 1506, 2159, 2248, 2383, 2518, 3125, 7419 }}
{{Val list|legend=1| 21, 22, 43, 46, 65d, 68, 89, 111, 159, 202, 224, 270, 494, 742, 764, 966, 1236, 1506, 2159, 2653, 3125, 3395, 7060, 7554, 10949e, 14614e, 15850ee, 22168bdee, 23404bcdee, 26799bcdeee, 34353bcdeeee }}


[[Badness]]: 0.274 × 10<sup>-6</sup>
[[Badness]]: 0.274 × 10<sup>-6</sup>
Line 33: Line 33:
[[POTE generator]]s: ~3/2 = 701.9826, ~33/32 = 53.3748
[[POTE generator]]s: ~3/2 = 701.9826, ~33/32 = 53.3748


{{Val list|legend=1| 21, 22, 24, 43, 46, 89, 135, 270, 359, 494, 629, 653, 742, 877, 1012, 1236, 1506, 2159, 2248, 2383, 2518, 7419 }}
{{Val list|legend=1| 21, 22, 24, 43, 46, 89, 135, 359, 494, 629, 742, 877, 1012, 1506, 2248, 2383, 2518, 7419, 8431e, 10949e, 13467e }}


The following unnamed rank-2 quartismic temperament MOS scales have been found
The following unnamed rank-2 quartismic temperament MOS scales have been found
* [https://sevish.com/scaleworkshop/?name=Rank%202%20scale%20(106.71461627796054%2C%201200.0)%2C%205%7C5&data=106.714616%0A213.429233%0A320.143849%0A426.858465%0A533.573081%0A666.426919%0A773.141535%0A879.856151%0A986.570767%0A1093.285384%0A1200.000000&freq=440&midi=69&vert=9&horiz=1&colors=&waveform=triangle&ampenv=organ Rank 2 scale (106.71461627796054, 1200.0), 5|5]   
* [https://sevish.com/scaleworkshop/?name=Rank%202%20scale%20(106.71461627796054%2C%201200.0)%2C%205%7C5&data=106.714616%0A213.429233%0A320.143849%0A426.858465%0A533.573081%0A666.426919%0A773.141535%0A879.856151%0A986.570767%0A1093.285384%0A1200.000000&freq=440&midi=69&vert=9&horiz=1&colors=&waveform=triangle&ampenv=organ Rank 2 scale (106.71461627796054, 1200.0), 5|5]   
* The following scale tree has been found: [http://www.microtonalsoftware.com/scale-tree.html?left=12&right=11&rr=1200&ioi=106.71461627796054 1200-106.71461627796054-12-11 Scale Tree]
* The following scale tree has been found: [http://www.microtonalsoftware.com/scale-tree.html?left=12&right=11&rr=1200&ioi=106.71461627796054 1200-106.71461627796054-12-11 Scale Tree]


== Altierran ==
== Altierran ==
Line 53: Line 53:
[[POTE generator]]s: ~3/2 = 701.7299, ~33/32 = 53.3889  
[[POTE generator]]s: ~3/2 = 701.7299, ~33/32 = 53.3889  


{{Val list|legend=1| 135, 159, 224, 248, 313, 472 }}
{{Val list|legend=1| 24, 46c, 65d, 89, 135, 159, 224, 383, 472, 696, 1168, 1327, 1551, 2023e }}


=== 13-limit ===
=== 13-limit ===
Line 79: Line 79:
[[POTE generator]]s: ~3/2 = 697.3325, ~33/32 = 54.1064
[[POTE generator]]s: ~3/2 = 697.3325, ~33/32 = 54.1064


{{Val list|legend=1| 24, 43, 45, 67 }}
{{Val list|legend=1| 24, 43, 67, 110c }}


== Coin ==
== Coin ==
Line 93: Line 93:
[[POTE generator]]s: ~5/4 = 380.3623, ~9/7 = 433.3120
[[POTE generator]]s: ~5/4 = 380.3623, ~9/7 = 433.3120


{{Val list|legend=1| 22, 25, 139cdd }}
{{Val list|legend=1| 19d, 22 }}


== Escapismic ==
== Escapismic ==
Line 107: Line 107:
[[POTE generator]]s: ~33/32 = 55.3538
[[POTE generator]]s: ~33/32 = 55.3538


{{Val list|legend=1| 21, 22, 43 }}
{{Val list|legend=1| 21, 22, 43, 65d, 521d, 543, 564, 586, 629c, 651 }}


== Dietismic ==
== Dietismic ==
Line 121: Line 121:
[[Mapping]]: [{{val| 2 3 5 5 7 }}, {{val| 0 2 -4 7 -1 }}]
[[Mapping]]: [{{val| 2 3 5 5 7 }}, {{val| 0 2 -4 7 -1 }}]


{{Val list|legend=1| 22, 24, 38cdde, 46, 68, 114 }}
{{Val list|legend=1| 22, 46, 68, 114 }}


Scales:  
Scales:  
Line 141: Line 141:
[[POTE generator]]s: ~6/5 = 317.0291, ~68/55 = 370.2940
[[POTE generator]]s: ~6/5 = 317.0291, ~68/55 = 370.2940


{{Val list|legend=1| 159, 178, 246 }}
{{Val list|legend=1| 68, 91, 159, 246, 337, 405 }}


== Doublefour ==
== Doublefour ==
Line 155: Line 155:
[[POTE generator]]s: ~425/384 = 175.9566, ~33/32 = 52.9708
[[POTE generator]]s: ~425/384 = 175.9566, ~33/32 = 52.9708


{{Val list|legend=1| 48d, 68, 89c }}
{{Val list|legend=1| 48d, 68, 116d, 157c, 225 }}


[[Category:Regular temperament theory]]
[[Category:Regular temperament theory]]

Revision as of 13:06, 7 June 2021

Todo: discuss title

This doesn't follow the definition of temperament family

The quartismic family is built up from temperaments of various ranks that temper out the quartisma- the unnoticeable comma with the ratio 117440512/117406179, and a monzo of [24 -6 0 1 -5. Among the members of this family are quartismatic, altierran, meanquarter, coin, escapismic, dietismic, kleirtismic, and doublefour.

Quartismic

The 11-limit parent comma for the quartismic family is the the quartisma with a ratio of 117440512/117406179 and a monzo of [24 -6 0 1 -5. As the quartisma is an unnoticeable comma, this rank-4 temperament is a microtemperament.

Subgroup: 2.3.5.7.11

Comma list: 117440512/117406179

Mapping: [1 0 0 1 5], 0 1 0 1 -1], 0 0 1 0 0], 0 0 0 5 1]]

Wedgie⟨⟨⟨⟨ 5 1 0 -6 -24 ]]]]

POTE generators: ~3/2 = 701.9826, ~5/4 = 386.3427, ~33/32 = 53.3748

Template:Val list

Badness: 0.274 × 10-6

Quartismatic

There are some temperaments in the quartismic family in which the quartisma is tempered out, but without any sort of five-limit representation. This particular temperament is the parent temperament of all such no-fives children, and is referred to as Saquinlu-azo temperament in color notation.

Subgroup: 2.3.7.11

Comma list: 117440512/117406179

Sval mapping: [1 0 1 5], 0 1 1 -1], 0 0 5 1]]

POTE generators: ~3/2 = 701.9826, ~33/32 = 53.3748

Template:Val list

The following unnamed rank-2 quartismic temperament MOS scales have been found

Altierran

In altierran, both the schisma and the quartisma are tempered out.

Subgroup: 2.3.5.7.11

Comma list: 32805/32768, 161280/161051

Mapping: [1 0 15 1 5], 0 1 -8 1 -1], 0 0 0 5 1]]

Wedgie⟨⟨⟨ -102 24 -15 75 6 -8 40 1 -5 0 ]]]

POTE generators: ~3/2 = 701.7299, ~33/32 = 53.3889

Template:Val list

13-limit

Todo: rename

Not an immediate extension, must be renamed

Subgroup: 2.3.5.7.11.13

Comma list: 10985/10976, 32805/32768, 161280/161051

Mapping: [1 2 -1 3 3 5], 0 -3 24 -3 3 -11], 0 0 0 5 1 5]]

POTE generators: ~11/10 = 166.0628, ~33/32 = 53.4151

Meanquarter

In meanquarter, both the meantone comma and the quartisma are tempered out.

Subgroup: 2.3.5.7.11

Comma list: 81/80, 4128768/4026275

Mapping: [1 0 -4 1 5], 0 1 4 1 -1], 0 0 5 1]]

POTE generators: ~3/2 = 697.3325, ~33/32 = 54.1064

Template:Val list

Coin

In coin, both the magic comma and the quartisma are tempered out.

Subgroup: 2.3.5.7.11

Comma list: 3125/3072, 117440512/117406179

Mapping: [1 0 2 1 5], 0 5 1 0 -6], 0 0 0 5 1]]

POTE generators: ~5/4 = 380.3623, ~9/7 = 433.3120

Template:Val list

Escapismic

In escapisimic, both the escapade comma and the quartisma are tempered out, thus, it is essentially an Escapade expansion.

Subgroup: 2.3.5.7.11

Comma list: 117440512/117406179, 4294967296/4271484375

Mapping: [1 2 2 3 3], 0 -9 7 -4 10], 0 0 0 5 1]]

POTE generators: ~33/32 = 55.3538

Template:Val list

Dietismic

In dietismic, both the diaschisma and the quartisma are tempered out. Dietismic can easily be further tempered to shrutar, and in fact, it is rather unusual to find a different tempering option.

Subgroup: 2.3.5.7.11

Comma list: 2048/2025, 117440512/117406179

POTE generators: ~3/2 = 704.5238, ~33/32 = 53.4408

Mapping: [2 3 5 5 7], 0 2 -4 7 -1]]

Template:Val list

Scales:

Rank 2 scale (52.6800, 2/1), 13|9

Rank 2 scale (53.3742, 2/1), 13|9

Kleirtismic

In kleirtismic, both the kleisma and the quartisma are tempered out. The "kleir-" in "kleirtismic" is pronounced the same as "Clair".

Subgroup: 2.3.5.7.11

Comma list: 15625/15552, 117440512/117406179

Mapping: [1 0 1 1 5], 0 6 5 1 -7], 0 0 0 5 1]]

POTE generators: ~6/5 = 317.0291, ~68/55 = 370.2940

Template:Val list

Doublefour

In doublefour, both the tetracot comma and the quartisma are tempered out.

Subgroup: 2.3.5.7.11

Comma list: 20000/19683, 100656875/99090432

Mapping: [1 1 1 2 4], 0 4 9 4 -4], 0 0 0 5 1]]

POTE generators: ~425/384 = 175.9566, ~33/32 = 52.9708

Template:Val list