5L 3s: Difference between revisions
mNo edit summary Tags: Mobile edit Mobile web edit |
mNo edit summary Tags: Mobile edit Mobile web edit |
||
Line 745: | Line 745: | ||
* R-M3-M8: Oneiro Major Seventh | * R-M3-M8: Oneiro Major Seventh | ||
* R-m3-M8: Oneiro Minor Major Seventh | * R-m3-M8: Oneiro Minor Major Seventh | ||
* R-M3-M7-M8: Oneiro Major Seventh Add6 | |||
* R-m3-M7-M8: Oneiro Minor Major Seventh Add6 | |||
* R-M3-P6-M8: Oneiro Major Seventh Add Major Fifth | * R-M3-P6-M8: Oneiro Major Seventh Add Major Fifth | ||
* R-m3-P6-M8: Oneiro Minor Major Seventh Add Major Fifth | * R-m3-P6-M8: Oneiro Minor Major Seventh Add Major Fifth |
Revision as of 20:56, 1 February 2021
5L 3s refers to the structure of MOS scales with generators ranging from 2\5 (two degrees of 5edo = 480¢) to 3\8 (three degrees of 8edo = 450¢). In the case of 8edo, L and s are the same size; in the case of 5edo, s becomes so small it disappears (and all that remains are the five equal L's).
The term oneirotonic (/oʊnaɪrəˈtɒnɪk/ oh-ny-rə-TON-ik or /ənaɪrə-/ ə-ny-rə-) is often used for the octave-equivalent MOS structure 5L 3s, whose brightest mode is LLsLLsLs. The name oneirotonic (from Greek oneiros 'dream') was coined by Cryptic Ruse after the Dreamlands in H.P. Lovecraft's Dream Cycle mythos. Oneirotonic is a distorted diatonic, because it has one extra small step compared to diatonic (5L 2s).
The generator size ranges from 450¢ (3\8) to 480¢ (2\5). Hence any edo with an interval between 450¢ and 480¢ has an oneirotonic scale. 13edo is the smallest edo with a (non-degenerate) 5L3s oneirotonic scale and thus is the most commonly used oneirotonic tuning.
In terms of regular temperaments, there are at least two melodically viable ways to interpret oneirotonic (analogous to diatonic having multiple temperament interpretations depending on generator size):
- When the generator is between 461.54¢ (5\13) and 466.67¢ (7\18): A-Team (13&18, a 4:5:9:21 or 2.9.5.21 temperament)
- When the generator is between 457.14¢ (8\21) and 461.54¢ (5\13): Petrtri (13&21, a 4:5:9:11:13:17 or 2.5.9.11.13.17 temperament)
13edo represents both temperaments.
More extreme oneirotonic temperaments include:
- Tridec (a 5:7:11:13 or 2.7/5.11/5.13/5 subgroup temperament), when the generator is between 454.05c (14\37) and 457.14c (8\21). These have a L/s ratio of 5/4 to 3/2.
- Buzzard, when the generator is between 471.42¢ (11\28) and 480¢ (2\5). While this is a harmonically accurate temperament, with 4 generators reaching 3/2 and -3 generators 7/4, it is relatively weak melodically, as the optimum size of the small steps is around 20-25 cents, making it difficult to distinguish from equal pentatonic.
Scale tree
generator | tetrachord | g in cents | 2g | 3g | 4g | Comments | ||||
---|---|---|---|---|---|---|---|---|---|---|
2\5 | 1 0 1 | 480.000 | 960.000 | 240.00 | 720.000 | |||||
21\53 | 10 1 10 | 475.472 | 950.943 | 226.415 | 701.887 | Vulture/Buzzard is around here | ||||
19\48 | 9 1 9 | 475 | 950 | 225 | 700 | |||||
17\43 | 8 1 8 | 474.419 | 948.837 | 223.256 | 697.674 | |||||
15\38 | 7 1 7 | 473.684 | 947.368 | 221.053 | 694.737 | |||||
13\33 | 6 1 6 | 472.727 | 945.455 | 218.181 | 690.909 | |||||
11\28 | 5 1 5 | 471.429 | 942.857 | 214.286 | 685.714 | |||||
9\23 | 4 1 4 | 469.565 | 939.130 | 208.696 | 678.261 | L/s = 4 | ||||
7\18 | 3 1 3 | 466.667 | 933.333 | 200.000 | 666.667 | L/s = 3 A-Team starts around here... | ||||
19\49 | 8 3 8 | 465.306 | 930.612 | 195.918 | 661.2245 | |||||
50\129 | 21 8 21 | 465.116 | 930.233 | 195.349 | 660.465 | |||||
131\338 | 55 21 55 | 465.089 | 930.1775 | 195.266 | 660.335 | |||||
212\547 | 89 34 89 | 465.082 | 930.1645 | 195.247 | 660.329 | |||||
81\209 | 34 13 34 | 465.072 | 930.1435 | 195.215 | 660.287 | |||||
31\80 | 13 5 13 | 465 | 930 | 195 | 660 | |||||
12\31 | 5 2 5 | 464.516 | 929.032 | 193.549 | 658.065 | |||||
5\13 | 2 1 2 | 461.538 | 923.077 | 184.615 | 646.154 | ...and ends here Boundary of propriety (generators smaller than this are proper) Petrtri starts here... | ||||
13\34 | 5 3 5 | 458.824 | 917.647 | 176.471 | 635.294 | |||||
34\89 | 13 8 13 | 458.427 | 916.854 | 175.281 | 633.708 | |||||
89\233 | 34 21 34 | 458.369 | 916.738 | 175.107 | 633.473 | |||||
233\610 | 89 55 89 | 458.361 | 916.721 | 175.082 | 633.443 | Golden father; generator is 2 octaves minus logarithmic phi | ||||
144\377 | 55 34 55 | 458.355 | 916.711 | 175.066 | 633.422 | |||||
55\144 | 21 13 21 | 458.333 | 916.666 | 175 | 633.333 | |||||
21\55 | 8 5 8 | 458.182 | 916.364 | 174.545 | 632.727 | |||||
8\21 | 3 2 3 | 457.143 | 914.286 | 171.429 | 628.571 | ...and ends here Optimum rank range (L/s=3/2) father | ||||
11\29 | 4 3 4 | 455.172 | 910.345 | 165.517 | 620.690 | Tridec is around here | ||||
14\37 | 5 4 5 | 454.054 | 908.108 | 162.162 | 616.216 | |||||
17\45 | 6 5 6 | 453.333 | 906.667 | 160 | 613.333 | |||||
20\53 | 7 6 7 | 452.83 | 905.66 | 158.491 | 611.321 | |||||
23\61 | 8 7 8 | 452.459 | 904.918 | 157.377 | 609.836 | |||||
26\69 | 9 8 9 | 452.174 | 904.348 | 156.522 | 608.696 | |||||
29\77 | 10 9 10 | 451.948 | 903.896 | 155.844 | 607.792 | |||||
3\8 | 1 1 1 | 450.000 | 900.000 | 150.000 | 600.000 |
Tuning ranges and data
A-Team (13&18)
A-Team tunings (with generator between 5\13 and 7\18) have L/s ratios between 2/1 and 3/1.
EDOs that support A-Team include 13edo, 18edo, and 31edo.
- 18edo can be used for a large L/s ratio of 3, (thus 18edo oneirotonic is distorted 17edo diatonic), or for nearly pure 9/8 and 7/6.
- 31edo can be used to make the major mos3rd a near-just 5/4.
The sizes of the generator, large step and small step of oneirotonic are as follows in various A-Team tunings.
13edo | 18edo | 31edo | Optimal (POTE) tuning | JI intervals represented (2.9.5.21 subgroup) | |
---|---|---|---|---|---|
generator (g) | 5\13, 461.54 | 7\18, 466.67 | 12\31, 464.52 | 464.14 | 21/16 |
L (3g - octave) | 2\13, 184.62 | 3\18, 200.00 | 5\31, 193.55 | 192.42 | 9/8, 10/9 |
s (-5g + 2 octaves) | 1\13, 92.31 | 1\18, 66.66 | 2\31, 77.42 | 79.30 | 21/20 |
Trivia: A-Team can be tuned by ear, by tuning a chain of pure harmonic sevenths and taking every other note. This corresponds to using a generator of 64/49 = 462.34819 cents. A chain of fourteen 7/4's are needed to tune the 8-note oneirotonic MOS. This produces a tuning close to 13edo.
Petrtri (13&21)
Petrtri tunings (with generator between 8\21 and 5\13) have less extreme L-to-s ratios than A-Team tunings, between 3/2 and 2/1. The 8\21-to-5\13 range of oneirotonic tunings remains relatively unexplored.
The three major edos in this range, 13edo, 21edo and 34edo, all nominally support petrtri, but 34edo is close to optimal for the temperament, with a generator only .33c flat of the optimal (POTE) petrtri generator of 459.1502c. Close-to-optimal petrtri tunings such as 34edo may be particularly useful for the Sarnathian mode, as Sarnathian in these tunings uniquely approximates four over-2 harmonics plausibly, namely 17/16, 5/4, 11/8, and 13/8.
The sizes of the generator, large step and small step of oneirotonic are as follows in various petrtri tunings.
13edo | 21edo | 34edo | Optimal (POTE) tuning | JI intervals represented (2.5.9.11.13.17 subgroup) | |
---|---|---|---|---|---|
generator (g) | 5\13, 461.54 | 8\21, 457.14 | 13\34, 458.82 | 459.15 | 13/10, 17/13, 22/17 |
L (3g - octave) | 2\13, 184.62 | 3\21, 171.43 | 5\34, 176.47 | 177.45 | 10/9, 11/10 |
s (-5g + 2 octaves) | 1\13, 92.31 | 2\21, 114.29 | 3\34, 105.88 | 104.25 | 18/17, 17/16 |
Notation
The notation used in this article is J Celephaïsian (LsLLsLLs) = JKLMNOPQJ, with reference pitch J = 360 Hz, unless specified otherwise. We denote raising and lowering by a chroma (L-s) by & "amp" and @ "at". (Mnemonics: & "and" means additional pitch. @ "at" rhymes with "flat".)
Thus the 13edo gamut is as follows:
J J&/K@ K L L&/M@ M M&/N@ N O O&/P@ P P&/Q@ Q J
Note: N is close to standard C, since the reference pitch 360 Hz for J was chosen to be nearly a pure 11/8 above standard 12edo C.
Intervals
Generators | Notation (1/1 = J) | Octatonic interval category name | Generators | Notation of 2/1 inverse | Octatonic interval category name |
---|---|---|---|---|---|
The 8-note MOS has the following intervals (from some root): | |||||
0 | J | perfect unison | 0 | J | octave |
1 | M | perfect mosfourth | -1 | O | perfect mossixth (aka major fifth) |
2 | P | major mosseventh | -2 | L | minor mosthird |
3 | K | major mossecond | -3 | Q@ | minor moseighth |
4 | N | major mosfifth (aka minor fifth) | -4 | N@ | minor mosfifth |
5 | Q | major moseighth | -5 | K@ | minor mossecond |
6 | L& | major mosthird | -6 | P@ | minor mosseventh |
7 | O& | augmented sixth | -7 | M@ | diminished fourth |
The chromatic 13-note MOS also has the following intervals (from some root): | |||||
8 | J& | augmented unison | -8 | J@ | diminished octave |
9 | M& | augmented mosfourth | -9 | O@ | diminished mossixth |
10 | P& | augmented mosseventh | -10 | L@ | diminished mosthird |
11 | K& | augmented mossecond | -11 | Q@@ | diminished moseighth |
12 | N& | augmented mosfifth | -12 | N@@ | diminished mosfifth |
Key signatures
Flat keys:
- J@ Celephaïsian, L@ Dylathian = Q@, N@, K@, P@, M@, J@, O@, L@
- M@ Celephaïsian, O@ Dylathian = Q@, N@, K@, P@, M@, J@, O@
- P@ Celephaïsian, J@ Dylathian = Q@, N@, K@, P@, M@, J@
- K@ Celephaïsian, M@ Dylathian = Q@, N@, K@, P@, M@
- N@ Celephaïsian, P@ Dylathian = Q@, N@, K@, P@
- Q@ Celephaïsian, K@ Dylathian = Q@, N@, K@
- L Celephaïsian, N@ Dylathian = Q@, N@
- O Celephaïsian, Q@ Dylathian = Q@
All-natural key signature:
- J Celephaïsian, L Dylathian = no sharps or flats
Sharp keys:
- M Celephaïsian, O Dylathian = L&
- P Celephaïsian, J Dylathian = L&, O&
- K Celephaïsian, M Dylathian = L&, O&, J&
- N Celephaïsian, P Dylathian = L&, O&, J&, M&
- Q Celephaïsian, K Dylathian = L&, O&, J&, M&, P&
- Enharmonic with J@ Celeph., L@ Dylath. in 13edo
- L& Celephaïsian, N Dylathian = L&, O&, J&, M&, P&, K&
- Enharmonic with M@ Celeph., O@ Dylath. in 13edo
- O& Celephaïsian, Q Dylathian = L&, O&, J&, M&, P&, K&, N&
- Enharmonic with P@ Celeph., J@ Dylath. in 13edo
- J& Celephaïsian, L& Dylathian = L&, O&, J&, M&, P&, K&, N&, Q&
- Enharmonic with K@ Celeph., M@ Dylath. in 13edo
Modes
Oneirotonic modes are named after cities in the Dreamlands.
- Dylathian: LLSLLSLS
- Ilarnekian: LLSLSLLS
- Celephaïsian: LSLLSLLS (Easley Blackwood's 13-note etude uses this as its home mode.)
- Ultharian: LSLLSLSL (A kinda-sorta Dorian analogue. Depending on your purposes, a better Dorian analogue may be the MODMOS LSLLLSLS; see the section on oneiro MODMOSes below.)
- Mnarian: LSLSLLSL
- Kadathian: SLLSLLSL
- Hlanithian: SLLSLSLL
- Sarnathian: SLSLLSLL
The modes on the white keys JKLMNOPQJ are:
- J Celephaïsian
- K Kadathian
- L Dylathian
- M Ultharian
- N Hlanithian
- O Ilarnekian
- P Mnarian
- Q Sarnathian
The modes in 13edo edo steps and C-H notation:
Pseudo-diatonic theory
Oneirotonic is often used as distorted diatonic. Because distorted diatonic modal harmony and functional harmony both benefit from a recognizable major third, the following theory essentially assumes an A-Team tuning, i.e. an oneirotonic tuning with generator between 5\13 and 7\18 (or possibly an approximation of such a tuning, such as a neji). The reader is encouraged to experiment and see what ideas work for other oneirotonic tunings.
Ana modes
We call modes with a major mos5th ana modes (from Greek for 'up'), because the sharper 5th degree functions as a flattened melodic fifth when moving from the tonic up. The ana modes of the MOS are the 4 brightest modes, namely Dylathian, Ilarnekian, Celephaïsian and Ultharian.
The ana modes have squashed versions of the classical major and minor pentachords R-M2-M3-P4-P5 and R-M2-m3-P4-P5 and can be viewed as providing a distorted version of classical diatonic functional harmony. For example, in the Dylathian mode, the 4:5:9 triad on the sixth degree can sound like both "V" and "III of iv" depending on context.
In pseudo-classical functional harmony, the 6th scale degree (either an augmented mossixth or a perfect mossixth) could be treated as mutable. The perfect mossixth would be used when invoking the diatonic V-to-I trope by modulating by a perfect mosfourth from the sixth degree "dominant". The augmented mossixth would be used when a major key needs to be used on the fourth degree "subdominant".
Progressions
Some suggested basic ana functional harmony progressions, outlined very roughly (note: VI is the sharp 5th, etc.). "I" means either Imaj or Imin. "Natural" Roman numerals follow the Ilarnekian mode.
- I-IVmin-VImaj-I
- Imaj-VIImin-IVmaj-Imaj
- Imin-@IIImaj-VImaj-Imaj
- Imin-@IIImaj-Vdim-VImaj-Imin
- Imin-@VIIImin-IIImaj-VImaj-Imin
- Imin-IVmin-@VIIImin-@IIImaj-VImaj-Imin
- Imin-IVmin-IIdim-VImaj-Imin
- Imin-IVmin-IIdim-@IIImaj-Imin
- I-VIImin-IImin-VImaj-I
- Imaj-VIImin-IVmin-VImaj-Imaj
- Modulations by major mos2nd:
- I-IV-VII-II
- I-IVmaj-II
- I-VIImin-II
- Modulations by major mos3rd:
- Modulate up major mos2nd twice
- Imin-VImin-III (only in 13edo)
- Imaj-&VImin-III (only in 13edo)
- Modulations by minor mos3rd:
- I-VI-@III
- I-IVmin-VImin-@VIIImaj-@III
Another approach to oneirotonic chord progressions is to let the harmony emerge from counterpoint.
Kata modes
We call modes with a minor mos5th kata modes (from Greek for 'down'). The kata modes of the MOS are the 4 darkest modes, namely Mnarian, Kadathian, Hlanithian and Sarnathian. In kata modes, the melodically squashed fifth from the tonic downwards is the flatter 5th degree. Kata modes could be used to distort diatonic tropes that start from the tonic and work downwards or work upwards towards the tonic from below it. For example:
- Mnarian (LSLSLLSL) and Kadathian (SLLSLLSL) are kata-Mixolydians
- Hlanithian (SLLSLSLL) is a kata-melodic major (the 4th degree sounds like a major third; it's actually a perfect mosfourth.)
- Sarnathian (SLSLLSLL) is a kata-melodic minor (When starting from the octave above, the 4th degree sounds like a minor third; it's actually a diminished mosfourth.)
When used in an "ana" way, the kata modes are radically different in character than the brighter modes. Because the fifth and seventh scale degrees become the more consonant minor tritone and the minor sixth respectively, the flat tritone sounds more like a stable scale function. Hlanithian, in particular, is a lot like a more stable version of the Locrian mode in diatonic.
MODMOSes
The most important oneirotonic MODMOS is LSLLLSLS (and its rotations), because it allows one to evoke certain ana or kata diatonic modes where three whole steps in a row are important (Dorian, Phrygian, Lydian or Mixo) in an octatonic context. The MOS would not always be able to do this because it has at most two consecutive large steps. As with the MOS, this MODMOS has four ana and four kata rotations:
- LLLSLSLS: Dylathian &4: an ana-Lydian
- LLSLSLSL: Ilarnekian @8: an ana-Mixolydian
- LSLLLSLS: Celephaïsian &6: an ana-Dorian
- SLLLSLSL: Ultharian @2: an ana-Phrygian
- SLSLSLLL: Sarnathian @6: a kata-Locrian
- SLSLLLSL: Sarnathian &6: a kata-Dorian
- LSLSLLLS: Mnarian &8: a kata-Ionian
- LSLSLSLL: Hlanithian &2: a kata-Aeolian
Other potentially interesting oneirotonic MODMOSes (that do not use half-sharps or half-flats) are:
- the distorted harmonic minor LSLSLLSAS (A = aug 2nd = L + chroma)
- the distorted Freygish SASLSLLS
Chords
Chords are given in oneirotonic MOS interval notation. For example, M5 means major mosfifth (squashed fifth).
- R-M3-M5: Squashed Major Triad
- R-m3-M5: Squashed Minor Triad
- R-m3-m5: Squashed Dim Triad
- R-M3-A5: Squashed Aug Triad
- R-M3-M5-A6: Squashed Major Triad Add6
- R-m3-M5-A6: Squashed Minor Triad Add6
- R-M3-M5-M7: Oneiro Major Tetrad
- R-m3-M5-M7: Oneiro Minor Tetrad
- R-m3-m5-M7: Oneiro Half-Diminished Tetrad
- R-m3-m5-m7: Orwell Tetrad, Oneiro Diminished Tetrad
- R-M3-A6: Squashed 1st Inversion Minor Triad
- R-m3-P6: Squashed 1st Inversion Major Triad
- R-M3-M7: 1st Inversion Squashed Minor Triad (note the order of terms!)
- R-m3-m7: 1st Inversion Squashed Major Triad
- R-m5-M7: 2nd Inversion Squashed Major Triad
- R-m5-m7: 2nd Inversion Squashed Minor Triad
- R-M3-M8: Oneiro Major Seventh
- R-m3-M8: Oneiro Minor Major Seventh
- R-M3-M7-M8: Oneiro Major Seventh Add6
- R-m3-M7-M8: Oneiro Minor Major Seventh Add6
- R-M3-P6-M8: Oneiro Major Seventh Add Major Fifth
- R-m3-P6-M8: Oneiro Minor Major Seventh Add Major Fifth
- R-M3-(M2): Oneiro Major Add9
- R-m3-(M2): Oneiro Minor Add9
- R-M3-(M2)-(P4): Oneiro Major Add9 Sub11
- R-m3-(M2)-(P4): Oneiro Minor Add9 Sub11
- R-M2-P4: Squashed Sus24 No5
- R-M2-M5: Squashed Sus2 Triad
- R-P4-M5: Squashed Sus4 Triad; Naiadic Maj2
- R-M2-P4-M5: Squashed Sus24
- R-P4-M7: Oneiro Quartal Triad
- R-P4-M7-(M2): Oneiro Quartal Tetrad, Core Tetrad
- R-P4-M7-(M2)-(M5): Oneiro Quartal Pentad, Core Pentad
- R-P4-M7-(M2)-(M5)-(M8): Oneiro Quartal Hexad
- R-P4-M7-M8: Oneiro Quartal Seventh Tetrad
- R-M3-m7: Sephiroth Triad (approximates 8:10:13 in 13edo)
- R-M3-m7-m2-(P4): Sephiroth Triad Addmin9 Sub11
- R-M3-m7-(P4): Sephiroth Triad Sub11
- R-P4-m8: Expanding Quartal Triad
- R-m3-P4-m8: Expanding Quartal Triad Addm3
- R-m5-m8: Contracting Quartal Triad
- R-m5-m7-m8: Contracting Quartal Triad Addm7
Zheanist theory
A-Team oneirotonic may be a particularly good place to bring to bear Zheanism's high harmonic series chords, as A-Team temperament doesn't yield many low-complexity chords.
18edo may be a better basis for a style of oneirotonic Zheanism using comma sharp and comma flat fifths than 13edo (in particular diesis sharp and diesis flat fifths; diesis is a category with a central region of 32 to 40c). In 18edo both the major fifth (+31.4c) and the minor fifth (-35.3) are about a diesis off from a just perfect fifth. In 13edo only the major fifth is a diesis sharp, and it is +36.5c off from just; so there's less wiggle room for a neji if you want every major fifth to be at most a diesis sharp).
31nejis and 34nejis also provide opportunities to use dieses directly, since 1\31 (38.71c) and 1\34 (35.29c) are both dieses.
Primodal chords
These are just oneirotonic-inspired chords, they aren't guaranteed to fit in your neji.
/13
- 13:16:19 Tridecimal Squashed Major Triad
- 13:17:19 Tridecimal Naiadic Maj2
- 13:17:20 Tridecimal Squashed 2nd Inversion Minor Triad
- 13:17:21 Tridecimal Squashed 2nd Inversion Major Triad
- 13:16:19:22 Tridecimal Oneiro Major Tetrad
- 26:29:38 Tridecimal Squashed Sus2 Triad
- 26:29:34:38 Tridecimal Sus24
/17
- 17:20:25 Septen Squashed Minor Triad
- 17:20:26 Septen Squashed 1st Inversion Major Triad
- 17:20:25:29 Septen Minor Oneiro Tetrad
- 17:21:25:29 Septen Major Oneiro Tetrad
- 17:20:26:29 Septen Squashed 1st Inversion Major Triad addM6
- 34:40:47:55 Septen Orwell Tetrad
- 34:40:52:58:76:89:102:129 (Celephaïsian + P5; R-min3-sup5-M6-M9-sub11-P12(fc)-M14)
- 34:40:52:58:76:89:102:110:129 (Celephaïsian + P5; R-min3-sup5-M6-M9-sub11-P12(fc)-supmin13-M14)
- 34:40:50:58:89:102:129 (R-min3-sub5-M6-M9-sub11-P12(rc)-M14)
- 34:40:50:58:89:102:110:129 (R-min3-sub5-M6-M9-sub11-P12(rc)-supmin13-M14)
- 34:40:50:58:76:89:110:129 (R-m3-sub5-M6-M9-sub11-supm13-M7)
- 34:40:50:58:76:89:102:110:129:208 (R-m3-sub5-M6-M9-sub11-P12(rc)-supm13-M14-sup19(rc^2))
/23
- 23:27:30 Vice Squashed Min4 No5
- 23:27:30:35:44 Vice Squashed Min4 addM5,M7
- 23:27:37 Vice Orwell Tetrad no5
- 46:54:60:67 Vice Squashed Min4
- 46:54:63 Vice Squashed Dim
- 46:54:63:76 Vice Orwell Tetrad
- 46:54:67 Vice Squashed Min
- 46:54:67:78 Vice Minor Oneiro Tetrad
- 46:54:60:67:78 Vice Min4 Oneiro Pentad
- 46:60:67 Vice Squashed Sus4
/29
- 29:34:38 Vicenon Squashed Sus4
- 29:34:42 Vicenon Squashed Minor Triad
- 29:36:42 Vicenon Squashed Major Triad
- 29:34:40:47 Vicenon Orwell Tetrad
- 29:38:65:84:99 Vicenon Oneiro Core Pentad
- 29:38:65:84:99:110 Vicenon Oneiro Core Hexad
- 58:65:72:80:84:94:99:110:116 Vicenon Dylathian &4
- 58:65:72:76:84:94:99:110:116 Vicenon Dylathian
- 58:65:72:76:84:89:99:110:116 Vicenon Ilarnekian
- 58:65:72:76:84:89:99:104:116 Vicenon Ilarnekian @8
- 58:65:68:76:84:94:99:110:116 Vicenon Celephaïsian &6
- 58:65:68:76:84:89:99:110:116 Vicenon Celephaïsian
- 58:65:68:76:84:89:99:104:116 Vicenon Ultharian
- 58:65:68:76:80:89:99:104:116 Vicenon Mnarian
- 58:65:68:76:80:89:99:110:116 Vicenon Mnarian &8
- 58:65:68:76:80:89:94:104:116 Vicenon Hlanithian &2
- 58:61:68:76:80:89:99:104:116 Vicenon Kadathian
- 58:61:68:76:84:89:99:104:116 Vicenon Ultharian @2
- 58:61:68:76:80:89:94:104:116 Vicenon Hlanithian
- 58:61:68:72:80:89:99:104:116 Vicenon Sarnathian &6
- 58:61:68:72:80:89:94:104:116 Vicenon Sarnathian
- 58:61:68:72:80:84:94:104:116 Vicenon Sarnathian @6
Over small prime multiples
Some oneirotonic nejis
- 58:61:65:68:72:76:80:84:89:94:99:104:110:116 A very low-complexity 13neji; not optimized for transposability.
"Oneirotonic maqam"
"Oneirotonic maqam" is based on the idea "If maqam is loosely an extension of diatonic that uses neutral intervals, what is the oneirotonic counterpart that uses oneirotonic neutral intervals?" or "What if we distorted maqam scales similarly to how oneirotonic distorts diatonic scales?" The following assumes an edo with A-Team oneirotonic scales and neutral mosseconds (i.e. half of an oneirotonic minor mosthird) such as 18edo and 26edo. In rank-2 temperament terms, this requires a loosely 18&26 structure.
- 26edo can be used if you want neutral mosseconds and minor mosthirds closer to their 24edo counterparts. In 26edo these are 138c and 277c respectively, but in 18edo these are 133c and 267c.
- 18edo can be used if you want neutral mosthirds (neutral mos2nd + major mos2nd) closer to conventional neutral thirds. The neutral mos3rd is 333c in 18edo and 323c in 26edo.
Oneirotonic rank-2 temperaments
The only notable harmonic entropy minimum is Vulture/Buzzard, in which four generators make a 3/1 (and three generators approximate an octave plus 8/7). The rest of this region does not approximate low-complexity JI harmony well, though there are a couple notable subgroup temperaments.
Todo: Add temperament data
Tridec (21&29, 2.7/5.11/5.13/5)
A-Team (13&18, 2.5.9.21)
Sortable table of intervals in the Dylathian mode and their A-Team interpretations:
Degree | Size in 13edo | Size in 18edo | Size in 31edo | Note name on L | Approximate ratios[1] | #Gens up |
---|---|---|---|---|---|---|
1 | 0\13, 0.00 | 0\18, 0.00 | 0\31, 0.00 | L | 1/1 | 0 |
2 | 2\13, 184.62 | 3\18, 200.00 | 5\31, 193.55 | M | 9/8, 10/9 | +3 |
3 | 4\13, 369.23 | 6\18, 400.00 | 10\31, 387.10 | N | 5/4 | +6 |
4 | 5\13, 461.54 | 7\18, 466.67 | 12\31, 464.52 | O | 21/16, 13/10 | +1 |
5 | 7\13, 646.15 | 10\18, 666.66 | 17\31, 658.06 | P | 13/9, 16/11 | +4 |
6 | 9\13, 830.77 | 13\18, 866.66 | 22\31, 851.61 | Q | 13/8, 18/11 | +7 |
7 | 10\13, 923.08 | 14\18, 933.33 | 24\31, 929.03 | J | 12/7 | +2 |
8 | 12\13, 1107.69 | 17\18, 1133.33 | 29\31, 1122.58 | K | +5 |
- ↑ The harmonics over 1/1 are in bold. The ratio interpretations that are not valid for 18edo are italicized.
Petrtri (13&21, 2.5.9.11.13.17)
Intervals
Sortable table of intervals in the Dylathian mode and their Petrtri interpretations:
Degree | Size in 13edo | Size in 21edo | Size in 34edo | Size in POTE tuning | Note name on L | Approximate ratios | #Gens up |
---|---|---|---|---|---|---|---|
1 | 0\13, 0.00 | 0\21, 0.00 | 0\34, 0.00 | 0.00 | L | 1/1 | 0 |
2 | 2\13, 184.62 | 3\21, 171.43 | 5\34, 176.47 | 177.45 | M | 10/9, 11/10 | +3 |
3 | 4\13, 369.23 | 6\21, 342.86 | 10\34, 352.94 | 354.90 | N | 11/9, 16/13 | +6 |
4 | 5\13, 461.54 | 8\21, 457.14 | 13\34, 458.82 | 459.15 | O | 13/10, 17/13, 22/17 | +1 |
5 | 7\13, 646.15 | 11\21, 628.57 | 18\34, 635.294 | 636.60 | P | 13/9, 16/11 | +4 |
6 | 9\13, 830.77 | 14\21, 800.00 | 23\34, 811.77 | 814.05 | Q | 8/5 | +7 |
7 | 10\13, 923.08 | 16\21, 914.29 | 26\34, 917.65 | 918.30 | J | 17/10 | +2 |
8 | 12\13, 1107.69 | 19\21, 1085.71 | 31\34, 1094.12 | 1095.75 | K | 17/9, 32/17 | +5 |
Buzzard (48&53, 2.3.5.7)
Commas: 1728/1715, 5120/5103
POTE generator: ~320/243 = 475.636
Map: [<1 0 -6 4|, <0 4 21 -3|]
Wedgie: <<4 21 -3 24 -16 -66||
EDOs: 48, 53, 111, 164d, 275d
Badness: 0.0480
Samples (for oneirotonic)
(A rather classical-sounding 3-part harmonization of the ascending J Ilarnekian scale; tuning is 13edo)
(13edo, first 30 seconds is in J Celephaïsian)
(13edo, L Ilarnekian)
(by Igliashon Jones, 13edo, J Celephaïsian)
Tritave MOSes with the 5L 3s pattern
By a weird coincidence, the other generator for this MOS will generate the same pattern within a tritave equivalence. By yet another weird coincidence, this MOS belongs to a temperament which has Bohlen-Pierce as its index-2 subtemperament. In addition to being harmonious, this tuning of the MOS gives an L/s ratio between 3/1 and 3/2, which is squarely in the middle of the range, being thus neither too exaggerated nor too equalized to be recognizable as such, unlike in octaves, where the only notable harmonic entropy minimum is near a greatly exaggerated 10/1 L/s ratio.
\ | tetrachord | g in cents
hekts |
2g | 3g | 4g | Comments | ||||
---|---|---|---|---|---|---|---|---|---|---|
2\5 | 1 0 1 | 760.782
520 |
1521.564
1040 |
380.391
260 |
1141.173
780 |
|||||
27\68 | 13 1 13 | 755.188
516.1765 |
1510.376
1032.353 |
363.609
248.529 |
1118.797
764.706 |
2g=12/5 minus quarter comma near here | ||||
25\63 | 12 1 12 | 754.744
515.873 |
1509.488
1031.746 |
362.277
247.619 |
1117.021
763.492 |
|||||
23\58 | 11 1 11 | 754.2235
515.517 |
1508.447
1031.0345 |
360.716
246.551 |
1114.939
762.069 |
|||||
21\53 | 10 1 10 | 753.605
515.094 |
1507.21
1030.189 |
358.859
245.283 |
1112.464
760.378 |
|||||
19\48 | 9 1 9 | 752.857
514.583 |
1505.714
1029.167 |
356.617
243.75 |
1109.474
758.333 |
|||||
17\43 | 8 1 8 | 751.936
513.9535 |
1503.871
1027.907 |
353.852
241.8605 |
1105.788
755.814 |
|||||
15\38 | 7 1 7 | 750.771
513.158 |
1501.543
1026.316 |
350.36
239.474 |
1101.132
752.632 |
|||||
28/71 | 13 2 13 | 750.067
512.676 |
1500.1335
1025.352 |
348.245
238.028 |
1098.312
750.704 |
|||||
41\104 | 19 3 19 | 749.809
512.5 |
1499.618
1025 |
347.4725
237.5 |
1097.282
750 |
3g=11/3 near here | ||||
13\33 | 6 1 6 | 749.255
512.121 |
1498.51
1024.242 |
345.81
236.364 |
1095.065
748.485 |
|||||
24\61 | 11 2 11 | 748.31
511.475 |
1496.62
1022.951 |
342.976
234.426 |
1091.286
745.902 |
|||||
35\89 | 16 3 16 | 747.96
511.236 |
1495.92
1022.472 |
341.924
233.708 |
1089.884
744.944 |
|||||
5+√29 2 5+√29 | 747.648
511.023 |
1495.297
1022.046 |
340.99
233.069 |
1088.638
744.092 |
4g=45/8 near here | |||||
11\28 | 5 1 5 | 747.197
510.714 |
1494.393
1021.429 |
339.635
232.143 |
1086.831
742.857 |
|||||
20\51 | 9 2 9 | 745.865
509.804 |
1491.729
1019.608 |
335.639
229.412 |
1081.504
739.216 |
|||||
29\74 | 13 3 13 | 745.361
509.4595 |
1490.721
1018.919 |
334.127
228.378 |
1079.488
737.838 |
|||||
38/97 | 17 4 17 | 745.096
509.278 |
1490.192
1018.557 |
333.332
227.835 |
1078.428
737.113 |
|||||
2+√5 1 2+√5 | 754.051
509.2475 |
1490.101
1018.495 |
333.197
227.742 |
1078.247
736.99 |
||||||
47\120 | 21 5 21 | 744.932
509.167 |
1489.865
1018.333 |
332.842
227.5 |
1077.7745
736.667 |
|||||
9\23 | 4 1 4 | 744.243
508.696 |
1488.487
1017.391 |
330.775
226.087 |
1075.018
734.783 |
L/s = 4 | ||||
34\87 | 15 4 15 | 743.293
508.046 |
1486.586
1016.092 |
327.923
224.138 |
1071.216
732.184 |
4g=39/7 near here | ||||
25\64 | 11 3 11 | 742.951
507.8125 |
1485.902
1015.625 |
326.899
223.4375 |
1069.85
731.25 |
|||||
16\41 | 7 2 7 | 742.226
507.317 |
1484.453
1014.634 |
324.724
221.951 |
1066.95
728.268 |
|||||
23\59 | 10 3 10 | 741.44
506.78 |
1482.88
1013.56 |
322.365
220.34 |
1063.805
727.12 |
|||||
3+√13 2 3+√13 | 741.289
506.676 |
1482.577
1013.352 |
321.911
220.028 |
1063.2
726.705 |
||||||
30\77 | 13 4 13 | 741.021
506.4935 |
1482.043
1012.987 |
321.109
219.4805 |
1062.131
725.974 |
|||||
pi 1 pi | 740.449
506.102 |
1480.898
1012.204 |
319.392
218.3065 |
1056.841
724.409 |
L/s = pi | |||||
7\18 | 3 1 3 | 739.649
505.556 |
1479.298
1011.111 |
316.992
216.667 |
1056.642
722.222 |
L/s = 3 | ||||
68\175 | 29 10 29 | 739.045
505.143 |
1478.091
1010.286 |
315.181
215.429 |
1054.227
720.571 |
3g=18/5 near here | ||||
61/157 | 26 9 26 | 738.976
505.0955 |
1477.952
1010.191 |
314.973
215.287 |
1053.949
720.382 |
|||||
54\139 | 23 8 23 | 738.889
505.036 |
1477.778
1010.072 |
314.712
215.108 |
1053.601
720.144 |
|||||
47\121 | 20 7 20 | 738.776
504.959 |
1477.552
1009.917 |
314.373
214.876 |
1053.149
719.835 |
|||||
40\103 | 17 6 17 | 738.623
504.854 |
1477.247
1009.709 |
313.915
214.563 |
1052.538
719.4175 |
|||||
33\85 | 14 5 14 | 738.406
504.706 |
1476.812
1009.412 |
313.263
214.1765 |
1051.669
718.882 |
|||||
26\67 | 11 4 11 | 738.072
504.478 |
1476.144
1008.955 |
312.261
213.433 |
1050.333
717.91 |
|||||
e 1 e | 737.855
504.329 |
1475.71
1008.6585 |
311.61
212.988 |
1049.465
717.317 |
L/s = e | |||||
19\49 | 8 3 8 | 737.493
504.082 |
1474.986
1008.163 |
310.523
212.245 |
1048.016
716.3265 |
3g=18/5 minus quarter comma near here | ||||
50\129 | 21 8 21 | 737.192
503.876 |
1474.384
1007.752 |
309.621
211.628 |
1046.812
715.504 |
|||||
131\338 | 55 21 55 | 737.148
503.846 |
1474.296
1007.692 |
309.49
211.5385 |
1046.638
715.385 |
|||||
212\547 | 89 34 89 | 737.138
503.839 |
1474.276
1007.678 |
309.459
211.517 |
1046.597
715.3565 |
|||||
81\209 | 34 13 34 | 737.121
503.828 |
1474.243
1007.6555 |
309.409
211.483 |
1046.53
715.311 |
|||||
31\80 | 13 5 13 | 737.008
503.75 |
1474.015
1007.5 |
309.068
211.25 |
1046.075
715 |
|||||
12\31 | 5 2 5 | 736.241
503.226 |
1472.481
1006.452 |
306.767
209.677 |
1043.007
712.903 |
|||||
1+√2 1 1+√2 | 735.542
502.748 |
1471.084
1005.497 |
304.6715
208.245 |
1040.214
710.994 |
Silver false father | |||||
17\44 | 7 3 7 | 734.846
502.273 |
1469.693
1004.5455 |
302.584
206.818 |
1037.41
709.091 |
|||||
22\57 | 9 4 9 | 734.088
501.754 |
1468.176
1003.509 |
300.309
205.263 |
1034.397
707.0175 |
|||||
27\70 | 11 5 11 | 733.611
501.429 |
1467.222
1002.857 |
298.879
204.286 |
1032.49
705.714 |
|||||
32\83 | 13 6 13 | 733.284
501.205 |
1466.568
1002.41 |
297.897
203.6145 |
1031.181
704.819 |
2g=7/3 near here | ||||
5\13 | 2 1 2 | 731.521
500 |
1463.042
1000 |
292.609
200 |
1024.13
700 |
|||||
48\125 | 19 10 19 | 730.35
499.2 |
1460.701
998.4 |
289.097
197.6 |
1019.448
696.8 |
3g=39/11 near here | ||||
43\112 | 17 9 17 | 730.215
499.107 |
1460.43
998.214 |
288.69
197.321 |
1018.905
696.429 |
|||||
38\99 | 15 8 15 | 730.043
498.99 |
1460.087
997.98 |
288.175
196.97 |
1018.218
695.96 |
|||||
33\86 | 13 7 13 | 729.82
498.837 |
1459.64
997.674 |
287.505
196.512 |
1017.325
695.349 |
4g=27/5 near here | ||||
28\73 | 11 6 11 | 729.547
498.63 |
1459.034
997.26 |
286.596
195.89 |
1016.113
694.5205 |
|||||
23\60 | 9 5 9 | 729.083
498.333 |
1458.1655
996.667 |
285.293
195 |
1014.376
693.333 |
|||||
41\107 | 16 9 16 | 728.7865
498.131 |
1457.563
996.262 |
284.4045
194.3925 |
1013.191
692.523 |
|||||
59\154 | 23 13 23 | 728.671
498.052 |
1457.342
996.104 |
284.058
194.156 |
1012.729
692.208 |
3g=99/28 near here | ||||
77\201 | 30 17 30 | 728.61
498.01 |
1457.219
996.02 |
283.874
194.03 |
1012.483
692.04 |
|||||
95\248 | 37 21 37 | 728.5715
497.984 |
1457.143
995.968 |
283.7145
193.952 |
1012.286
691.9355 |
Golden BP is index-2 near here | ||||
18\47 | 7 4 7 | 728.408
497.872 |
1456.817
995.745 |
283.27
193.617 |
1011.678
691.49 |
|||||
√3 1 √3 | 728.159
497.702 |
1456.318
995.404 |
282.522
193.106 |
1010.6815
690.808 |
4g=27/5 minus third comma near here | |||||
31\81 | 12 7 12 | 727.909
497.531 |
1455.817
995.062 |
281.771
192.593 |
1009.68
690.1235 |
|||||
13\34 | 5 3 5 | 727.218
497.059 |
1454.436
994.118 |
279.699
191.1765 |
1006.917
688.235 |
|||||
34\89 | 13 8 13 | 726.59
496.629 |
1453.179
993.258 |
277.814
189.888 |
1004.403
686.517 |
|||||
89\233 | 34 21 34 | 726.498
496.5665 |
1452.996
993.133 |
277.538
189.7 |
1004.036
686.266 |
|||||
233\610 | 89 55 89 | 726.4845
496.557 |
1452.969
993.115 |
277.4985
189.672 |
1003.983
686.2295 |
Golden false father | ||||
144\377 | 55 34 55 | 726.476
496.552 |
1452.952
993.104 |
277.473
189.655 |
1003.95
686.207 |
|||||
55\144 | 21 13 21 | 726.441
496.528 |
1452.882
993.056 |
277.368
189.583 |
1003.809
686.111 |
|||||
21\55 | 8 5 8 | 726.201
496.364 |
1452.402
992.727 |
276.468
189.091 |
1002.849
685.4545 |
|||||
pi 2 pi | 725.736
496.046 |
1451.472
992.091 |
275.252
188.137 |
1000.988
684.183 |
||||||
8\21 | 3 2 3 | 724.554
495.238 |
1449.109
990.476 |
271.708
185.714 |
996.226
680.952 |
Optimum rank range (L/s=3/2) false father
4g=16/3 near here | ||||
27\71 | 10 7 10 | 723.279
494.366 |
1446.557
988.732 |
267.881
183.099 |
991.16
677.465 |
|||||
46\121 | 17 12 17 | 723.057
494.215 |
1446.115
988.43 |
267.217
182.645 |
990.274
676.8595 |
|||||
19\50 | 7 5 7 | 722.743
494 |
1445.486
988 |
266.274
182 |
989.017
676 |
3g=7/2 near here | ||||
11\29 | 4 3 4 | 721.431
493.103 |
1442.862
986.207 |
262.338
179.31 |
983.77
672.414 |
|||||
25\66 | 9 7 9 | 720.4375
492.424 |
1440.875
984.8485 |
259.3575
177.273 |
979.795
669.697 |
|||||
64\169 | 23 18 23 | 720.267
492.308 |
1440.534
984.615 |
258.848
176.923 |
979.113
669.231 |
|||||
167\441 | 60 47 60 | 720.2415
492.29 |
1440.483
984.5805 |
258.7965
176.871 |
979.001
669.161 |
|||||
437\1154 | 157 123 157 | 720.238
492.288 |
1440.475
984.575 |
258.758
176.863 |
978.996
669.151 |
|||||
270\713 | 97 76 97 | 720.235
492.286 |
1440.471
984.572 |
258.751
176.858 |
978.987
669.1445 |
|||||
103\272 | 37 29 37 | 720.226
492.279 |
1440.451
984.558 |
258.722
176.837 |
978.947
669.116 |
|||||
39\103 | 14 11 14 | 720.158
492.233 |
1440.315
984.466 |
258.518
176.699 |
978.676
668.932 |
|||||
14\37 | 5 4 5 | 719.659
491.892 |
1439.317
983.784 |
257.021
175.676 |
976.679
667.568 |
|||||
31\82 | 11 9 11 | 719.032
491.463 |
1438.064
982.927 |
255.14
174.39 |
974.172
665.844 |
|||||
79\209 | 28 23 28 | 718.921
491.388 |
1437.842
982.775 |
254.807
174.163 |
973.728
665.55 |
|||||
206\545 | 73 60 73 | 718.904
491.376 |
1437.808
982.752 |
254.757
174.138 |
973.661
665.505 |
|||||
539\1426 | 191 117 191 | 718.902
491.3745 |
1437.803
982.749 |
254.75
174.123 |
973.652
665.498 |
|||||
333\881 | 118 97 118 | 718.9
491.373 |
1437.8
982.747 |
254.745
174.12 |
973.6455
665.494 |
|||||
127\336 | 45 37 45 | 718.893
491.369 |
1437.787
982.738 |
254.726
174.107 |
973.619
665.476 |
|||||
48\127 | 17 14 17 | 718.849
491.339 |
1437.698
982.677 |
254.592
174.016 |
973.441
665.354 |
|||||
17\45 | 6 5 6 | 718.516
491.111 |
1437.032
982.222 |
253.549
173.333 |
972.11
664.444 |
|||||
20\53 | 7 6 7 | 717.719
490.566 |
1435.438
981.132 |
251.202
171.698 |
968.9205
662.264 |
4g=21/4 near here | ||||
23\61 | 8 7 8 | 717.131
490.164 |
1434.261
980.328 |
249.437
170.492 |
966.567
660.656 |
|||||
49\130 | 17 15 17 | 716.891
490 |
1433.7815
980 |
248.717
170 |
965.608
660 |
4g=quarter-comma meantone 21/4 near here
6g=12 near here | ||||
26\69 | 9 8 9 | 716.679
489.855 |
1433.357
979.71 |
248.081
169.565 |
964.76
659.42 |
|||||
29\77 | 10 9 10 | 716.321
489.61 |
1432.641
979.221 |
247.007
168.831 |
963.328
658.442 |
|||||
32\85 | 11 10 11 | 716.03
489.412 |
1432.06
978.8235 |
246.135
168.235 |
962.1655
657.647 |
|||||
35\93 | 12 11 12 | 715.7895
489.247 |
1431.579
978.495 |
245.4135
167.742 |
961.203
656.989 |
|||||
38/101 | 13 12 13 | 715.587
489.109 |
1431.174
978.218 |
244.806
167.327 |
960.393
656.436 |
2g=16\7 near here | ||||
3\8 | 1 1 1 | 713.233
487.5 |
1426.466
975 |
237.744
162.5 |
950.9775
650 |