95ed5: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Xenllium (talk | contribs)
Created page with "'''Division of the 5th harmonic into 95 equal parts''' (95ed5) is related to 41 edo, but with the 5/1 rather than the 2/1 being just. The octave is about 2.5143 cent..."
Tags: Mobile edit Mobile web edit
 
Xenllium (talk | contribs)
No edit summary
Tags: Mobile edit Mobile web edit
Line 25: Line 25:
| | 3
| | 3
| | 87.9889
| | 87.9889
| |  
| | 81/77
| |  
| |  
|-
|-
Line 35: Line 35:
| | 5
| | 5
| | 146.6481
| | 146.6481
| |  
| | [[49/45]]
| |  
| |  
|-
|-
| | 6
| | 6
| | 175.9777
| | 175.9777
| |  
| | 448/405
| |  
| |  
|-
|-
Line 50: Line 50:
| | 8
| | 8
| | 234.6369
| | 234.6369
| |  
| | [[55/48]], [[63/55]]
| |  
| |  
|-
|-
| | 9
| | 9
| | 263.9666
| | 263.9666
| |  
| | 220/189
| |  
| |  
|-
|-
Line 65: Line 65:
| | 11
| | 11
| | 322.6258
| | 322.6258
| |  
| | 135/112
| |  
| |  
|-
|-
| | 12
| | 12
| | 351.9554
| | 351.9554
| |  
| | [[60/49]]
| |  
| |  
|-
|-
Line 80: Line 80:
| | 14
| | 14
| | 410.6147
| | 410.6147
| |  
| | 308/243
| |  
| |  
|-
|-
Line 90: Line 90:
| | 16
| | 16
| | 469.2739
| | 469.2739
| |  
| | [[21/16]]
| |  
| |  
|-
|-
| | 17
| | 17
| | 498.6035
| | 498.6035
| |  
| | [[4/3]]
| |  
| |  
|-
|-
Line 105: Line 105:
| | 19
| | 19
| | 557.2627
| | 557.2627
| |  
| | 243/176
| |  
| |  
|-
|-
| | 20
| | 20
| | 586.5924
| | 586.5924
| |  
| | 108/77, 275/196
| |  
| |  
|-
|-
Line 120: Line 120:
| | 22
| | 22
| | 645.2516
| | 645.2516
| |  
| | 196/135
| |  
| |  
|-
|-
| | 23
| | 23
| | 674.5812
| | 674.5812
| |  
| | 2025/1372
| |  
| |  
|-
|-
Line 135: Line 135:
| | 25
| | 25
| | 733.2405
| | 733.2405
| |  
| | 84/55, [[55/36]]
| |  
| |  
|-
|-
Line 150: Line 150:
| | 28
| | 28
| | 821.2293
| | 821.2293
| |  
| | [[45/28]]
| |  
| |  
|-
|-
Line 160: Line 160:
| | 30
| | 30
| | 879.8885
| | 879.8885
| |  
| | 539/324
| | pseudo-[[5/3]]
| | pseudo-[[5/3]]
|-
|-
| | 31
| | 31
| | 909.2182
| | 909.2182
| |  
| | 1232/729, 3645/2156
| |  
| |  
|-
|-
Line 175: Line 175:
| | 33
| | 33
| | 967.8774
| | 967.8774
| |  
| | [[7/4]]
| |  
| |  
|-
|-
| | 34
| | 34
| | 997.2070
| | 997.2070
| |  
| | [[16/9]]
| |  
| |  
|-
|-
Line 190: Line 190:
| | 36
| | 36
| | 1055.8662
| | 1055.8662
| |  
| | 81/44
| |  
| |  
|-
|-
| | 37
| | 37
| | 1085.1959
| | 1085.1959
| |  
| | 144/77, 275/147
| |  
| |  
|-
|-
Line 205: Line 205:
| | 39
| | 39
| | 1143.8551
| | 1143.8551
| |  
| | 784/405
| |  
| |  
|-
|-
| | 40
| | 40
| | 1173.1847
| | 1173.1847
| |  
| | 675/343
| |  
| |  
|-
|-
| | 41
| | 41
| | 1202.5143
| | 1202.5143
| |  
| | 441/220
| | pseudo-[[octave]]
| | pseudo-[[octave]]
|-
|-
| | 42
| | 42
| | 1231.8440
| | 1231.8440
| |  
| | [[56/55|112/55]], [[55/54|55/27]]
| |  
| |  
|-
|-
Line 235: Line 235:
| | 45
| | 45
| | 1319.8328
| | 1319.8328
| |  
| | [[15/14|15/7]]
| |  
| |  
|-
|-
Line 245: Line 245:
| | 47
| | 47
| | 1378.4920
| | 1378.4920
| |  
| | 539/243
| |  
| |  
|-
|-
| | 48
| | 48
| | 1407.8217
| | 1407.8217
| |  
| | 1215/539
| |  
| |  
|-
|-
Line 260: Line 260:
| | 50
| | 50
| | 1466.4809
| | 1466.4809
| |  
| | [[7/3]]
| |  
| |  
|-
|-
Line 275: Line 275:
| | 53
| | 53
| | 1554.4698
| | 1554.4698
| |  
| | [[27/22|27/11]], 275/112
| |  
| |  
|-
|-
| | 54
| | 54
| | 1583.7994
| | 1583.7994
| |  
| | 1100/441
| | pseudo-[[5/2]]
| | pseudo-[[5/2]]
|-
|-
| | 55
| | 55
| | 1613.1290
| | 1613.1290
| |  
| | 343/135
| |  
| |  
|-
|-
| | 56
| | 56
| | 1642.4586
| | 1642.4586
| |  
| | 2025/784
| |  
| |  
|-
|-
Line 300: Line 300:
| | 58
| | 58
| | 1701.1178
| | 1701.1178
| |  
| | 147/55, 385/144
| |  
| |  
|-
|-
| | 59
| | 59
| | 1730.4475
| | 1730.4475
| |  
| | 220/81
| |  
| |  
|-
|-
Line 315: Line 315:
| | 61
| | 61
| | 1789.1067
| | 1789.1067
| |  
| | [[45/32|45/16]]
| |  
| |  
|-
|-
| | 62
| | 62
| | 1818.4363
| | 1818.4363
| |  
| | [[10/7|20/7]]
| |  
| |  
|-
|-
Line 330: Line 330:
| | 64
| | 64
| | 1877.0956
| | 1877.0956
| |  
| | 2156/729, 3645/1232
| |  
| |  
|-
|-
| | 65
| | 65
| | 1906.4252
| | 1906.4252
| |  
| | 1620/539
| | pseudo-[[3/1]]
| | pseudo-[[3/1]]
|-
|-
Line 345: Line 345:
| | 67
| | 67
| | 1965.0844
| | 1965.0844
| |  
| | [[14/9|28/9]]
| |  
| |  
|-
|-
Line 360: Line 360:
| | 70
| | 70
| | 2053.0733
| | 2053.0733
| |  
| | [[18/11|36/11]], 275/84
| |  
| |  
|-
|-
Line 370: Line 370:
| | 72
| | 72
| | 2111.7325
| | 2111.7325
| |  
| | 1372/405
| |  
| |  
|-
|-
| | 73
| | 73
| | 2141.0621
| | 2141.0621
| |  
| | 675/196
| |  
| |  
|-
|-
Line 385: Line 385:
| | 75
| | 75
| | 2199.7214
| | 2199.7214
| |  
| | 196/55, 385/108
| |  
| |  
|-
|-
| | 76
| | 76
| | 2229.0510
| | 2229.0510
| |  
| | 880/243
| |  
| |  
|-
|-
Line 400: Line 400:
| | 78
| | 78
| | 2287.7102
| | 2287.7102
| |  
| | [[15/4]]
| |  
| |  
|-
|-
| | 79
| | 79
| | 2317.0398
| | 2317.0398
| |  
| | [[40/21|80/21]]
| |  
| |  
|-
|-
Line 415: Line 415:
| | 81
| | 81
| | 2375.6991
| | 2375.6991
| |  
| | 1215/308
| |  
| |  
|-
|-
Line 425: Line 425:
| | 83
| | 83
| | 2434.3583
| | 2434.3583
| |  
| | [[49/48|49/12]]
| |  
| |  
|-
|-
| | 84
| | 84
| | 2463.6879
| | 2463.6879
| |  
| | [[28/27|112/27]]
| |  
| |  
|-
|-
Line 440: Line 440:
| | 86
| | 86
| | 2522.3472
| | 2522.3472
| |  
| | 189/44
| |  
| |  
|-
|-
| | 87
| | 87
| | 2551.6768
| | 2551.6768
| |  
| | [[12/11|48/11]], 275/63
| |  
| |  
|-
|-
Line 455: Line 455:
| | 89
| | 89
| | 2610.3360
| | 2610.3360
| |  
| | 2025/448
| |  
| |  
|-
|-
| | 90
| | 90
| | 2639.6656
| | 2639.6656
| |  
| | 225/49
| |  
| |  
|-
|-
Line 470: Line 470:
| | 92
| | 92
| | 2698.3249
| | 2698.3249
| |  
| | 385/81
| |  
| |  
|-
|-
Line 488: Line 488:
| | just major third plus two octaves
| | just major third plus two octaves
|}
|}
95ed5 can also be thought of as a generator of the 11-limit temperament which tempers out 3025/3024, 184877/184320, and 2460375/2458624, which is a [[cluster temperament]] with 41 clusters of notes in an octave. The small chroma interval between adjacent notes in each cluster is very versatile, representing 64/63 ~ 12100/11907 ~ 295245/290521 ~ 273375/268912 ~ 16807/16500 all tempered together. This temperament is supported by [[41edo]], [[491edo]] (491e val), and [[532edo]] (532d val) among others.

Revision as of 11:03, 30 December 2018

Division of the 5th harmonic into 95 equal parts (95ed5) is related to 41 edo, but with the 5/1 rather than the 2/1 being just. The octave is about 2.5143 cents stretched and the step size about 29.3296 cents. This tuning has a generally sharp tendency for harmonics up to 12. Unlike 41edo, it is only consistent up to the 12-integer-limit, with discrepancy for the 13th harmonic.

degree cents value corresponding
JI intervals
comments
0 0.0000 exact 1/1
1 29.3296
2 58.6592
3 87.9889 81/77
4 117.3185
5 146.6481 49/45
6 175.9777 448/405
7 205.3073
8 234.6369 55/48, 63/55
9 263.9666 220/189
10 293.2962
11 322.6258 135/112
12 351.9554 60/49
13 381.2850 pseudo-5/4
14 410.6147 308/243
15 439.9443
16 469.2739 21/16
17 498.6035 4/3
18 527.9331
19 557.2627 243/176
20 586.5924 108/77, 275/196
21 615.9220
22 645.2516 196/135
23 674.5812 2025/1372
24 703.9108 pseudo-3/2
25 733.2405 84/55, 55/36
26 762.5701
27 791.8997
28 821.2293 45/28
29 850.5589
30 879.8885 539/324 pseudo-5/3
31 909.2182 1232/729, 3645/2156
32 938.5478
33 967.8774 7/4
34 997.2070 16/9
35 1026.5366
36 1055.8662 81/44
37 1085.1959 144/77, 275/147
38 1114.5255
39 1143.8551 784/405
40 1173.1847 675/343
41 1202.5143 441/220 pseudo-octave
42 1231.8440 112/55, 55/27
43 1261.1736
44 1290.5032
45 1319.8328 15/7
46 1349.1624
47 1378.4920 539/243
48 1407.8217 1215/539
49 1437.1513
50 1466.4809 7/3
51 1495.8105
52 1525.1401
53 1554.4698 27/11, 275/112
54 1583.7994 1100/441 pseudo-5/2
55 1613.1290 343/135
56 1642.4586 2025/784
57 1671.7882
58 1701.1178 147/55, 385/144
59 1730.4475 220/81
60 1759.7771
61 1789.1067 45/16
62 1818.4363 20/7
63 1847.7659
64 1877.0956 2156/729, 3645/1232
65 1906.4252 1620/539 pseudo-3/1
66 1935.7548
67 1965.0844 28/9
68 1994.4140
69 2023.7436
70 2053.0733 36/11, 275/84
71 2082.4029 pseudo-10/3
72 2111.7325 1372/405
73 2141.0621 675/196
74 2170.3917
75 2199.7214 196/55, 385/108
76 2229.0510 880/243
77 2258.3806
78 2287.7102 15/4
79 2317.0398 80/21
80 2346.3694
81 2375.6991 1215/308
82 2405.0287 pseudo-4/1
83 2434.3583 49/12
84 2463.6879 112/27
85 2493.0175
86 2522.3472 189/44
87 2551.6768 48/11, 275/63
88 2581.0064
89 2610.3360 2025/448
90 2639.6656 225/49
91 2668.9952
92 2698.3249 385/81
93 2727.6545
94 2756.9841
95 2786.3137 exact 5/1 just major third plus two octaves

95ed5 can also be thought of as a generator of the 11-limit temperament which tempers out 3025/3024, 184877/184320, and 2460375/2458624, which is a cluster temperament with 41 clusters of notes in an octave. The small chroma interval between adjacent notes in each cluster is very versatile, representing 64/63 ~ 12100/11907 ~ 295245/290521 ~ 273375/268912 ~ 16807/16500 all tempered together. This temperament is supported by 41edo, 491edo (491e val), and 532edo (532d val) among others.