User:MisterShafXen/2edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Created page with "Here is my approach to 2edo: == Basics =="
Tags: Visual edit Mobile edit Mobile web edit
 
mNo edit summary
Tags: Visual edit Mobile edit Mobile web edit
Line 1: Line 1:
Here is my approach to [[2edo]]:
{{Infobox ET}}
 
{{ED intro}}
 
== Theory ==
This tuning tempers out [[9/8]], supporting [[antitonic]].
 
== Notation ==
A B. All As and Bs.
 
== Intervals ==
{{Interval table|2edo}}
 
== Harmonics ==
{{Harmonics in equal|steps=2|intervals=prime|columns=15}}{{Harmonics in equal|steps=2|intervals=prime|start=16|columns=15}}{{Harmonics in equal|steps=2|intervals=prime|start=31|columns=15}}


== Basics ==
== Basics ==

Revision as of 14:03, 27 July 2025

← 1edo 2edo 3edo →
Prime factorization 2 (prime)
Step size 600 ¢ 
Fifth 1\2 (600 ¢)
(convergent)
Semitones (A1:m2) -1:1 (-600 ¢ : 600 ¢)
Consistency limit 3
Distinct consistency limit 1
Special properties

2 equal divisions of the octave (abbreviated 2edo or 2ed2), also called 2-tone equal temperament (2tet) or 2 equal temperament (2et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 2 equal parts of exactly 600 ¢ each. Each step represents a frequency ratio of 21/2, or the 2nd root of 2.

Theory

This tuning tempers out 9/8, supporting antitonic.

Notation

A B. All As and Bs.

Intervals

Steps Cents Approximate ratios Ups and downs notation
0 0 1/1, 8/7, 9/8, 11/10, 12/11, 13/12, 15/14, 16/15, 17/15, 17/16, 18/17, 19/17, 19/18 D, E, C
1 600 3/2, 4/3, 5/4, 7/5, 8/5, 10/7, 11/7, 11/8, 13/8, 13/9, 14/11, 15/11, 16/11, 16/13, 17/11, 17/12, 17/13, 18/13, 19/12, 19/13 F, G, A, B
2 1200 2/1, 7/4, 9/4, 11/5, 11/6, 13/6, 15/7, 15/8, 16/7, 16/9, 17/8, 17/9, 19/9, 20/11 D

Harmonics

Approximation of prime harmonics in 2edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Error Absolute (¢) +0 -102 +214 +231 +49 -241 -105 -298 -28 +170 +55 -251 +171 +88 -66
Relative (%) +0.0 -17.0 +35.6 +38.5 +8.1 -40.1 -17.5 -49.6 -4.7 +28.4 +9.2 -41.9 +28.5 +14.7 -10.9
Steps
(reduced)
2
(0)
3
(1)
5
(1)
6
(0)
7
(1)
7
(1)
8
(0)
8
(0)
9
(1)
10
(0)
10
(0)
10
(0)
11
(1)
11
(1)
11
(1)
Approximation of prime harmonics in 2edo
Harmonic 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113
Error Absolute (¢) -274 +141 +83 -79 -180 -228 +235 +150 +29 -120 -190 -224 -290 +278 +216
Relative (%) -45.6 +23.5 +13.9 -13.2 -29.9 -38.0 +39.2 +25.0 +4.9 -20.0 -31.6 -37.3 -48.3 +46.4 +36.0
Steps
(reduced)
11
(1)
12
(0)
12
(0)
12
(0)
12
(0)
12
(0)
13
(1)
13
(1)
13
(1)
13
(1)
13
(1)
13
(1)
13
(1)
14
(0)
14
(0)
Approximation of prime harmonics in 2edo
Harmonic 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197
Error Absolute (¢) +14 -40 -118 -143 -263 -286 +246 +182 +140 +78 +19 +0 -93 -111 -146
Relative (%) +2.3 -6.7 -19.6 -23.8 -43.8 -47.7 +41.1 +30.3 +23.3 +13.1 +3.2 +0.0 -15.5 -18.5 -24.4
Steps
(reduced)
14
(0)
14
(0)
14
(0)
14
(0)
14
(0)
14
(0)
15
(1)
15
(1)
15
(1)
15
(1)
15
(1)
15
(1)
15
(1)
15
(1)
15
(1)

Basics