35edt: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Cleanup
+subsets and supersets; +see also
 
Line 8: Line 8:
{{Harmonics in equal|35|3|1|intervals=integer|columns=11}}
{{Harmonics in equal|35|3|1|intervals=integer|columns=11}}
{{Harmonics in equal|35|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 35edt (continued)}}
{{Harmonics in equal|35|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 35edt (continued)}}
=== Subsets and supersets ===
Since 35 factors into primes as {{nowrap| 5 × 7 }}, 35edt has subset edts [[5edt]] and [[7edt]].


== Intervals ==
== Intervals ==
Line 198: Line 201:
|}
|}
<nowiki/>* As a 2.3.5.7.11.17-subgroup temperament
<nowiki/>* As a 2.3.5.7.11.17-subgroup temperament
== See also ==
* [[22edo]] – relative edo
* [[57ed6]] – relative ed6
* [[79ed12]] – relative ed12

Latest revision as of 09:37, 27 May 2025

← 34edt 35edt 36edt →
Prime factorization 5 × 7
Step size 54.3416 ¢ 
Octave 22\35edt (1195.51 ¢)
Consistency limit 12
Distinct consistency limit 8

35 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 35edt or 35ed3), is a nonoctave tuning system that divides the interval of 3/1 into 35 equal parts of about 54.3 ¢ each. Each step represents a frequency ratio of 31/35, or the 35th root of 3.

Theory

35edt is related to 22edo, but with the perfect twelfth rather than the octave being just. The octave is about 4.4854 cents compressed. Like 22edo, 35edt is consistent to the 12-integer-limit.

Harmonics

Approximation of harmonics in 35edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -4.5 +0.0 -9.0 -14.9 -4.5 +0.4 -13.5 +0.0 -19.4 -21.4 -9.0
Relative (%) -8.3 +0.0 -16.5 -27.4 -8.3 +0.6 -24.8 +0.0 -35.7 -39.3 -16.5
Steps
(reduced)
22
(22)
35
(0)
44
(9)
51
(16)
57
(22)
62
(27)
66
(31)
70
(0)
73
(3)
76
(6)
79
(9)
Approximation of harmonics in 35edt (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) +15.5 -4.1 -14.9 -17.9 -14.2 -4.5 +10.6 -23.9 +0.4 -25.8 +5.9 -13.5
Relative (%) +28.5 -7.6 -27.4 -33.0 -26.2 -8.3 +19.5 -43.9 +0.6 -47.6 +10.8 -24.8
Steps
(reduced)
82
(12)
84
(14)
86
(16)
88
(18)
90
(20)
92
(22)
94
(24)
95
(25)
97
(27)
98
(28)
100
(30)
101
(31)

Subsets and supersets

Since 35 factors into primes as 5 × 7, 35edt has subset edts 5edt and 7edt.

Intervals

# Cents Hekts Approximate ratios*
0 0.0 0.0 1/1
1 54.3 37.1 33/32, 36/35
2 108.7 74.3 15/14, 16/15, 17/16, 18/17
3 163.0 111.4 10/9, 11/10, 12/11
4 217.4 148.6 8/7, 9/8
5 271.7 185.7 7/6
6 326.0 222.9 6/5
7 380.4 260.0 5/4
8 434.7 297.1 9/7
9 489.1 334.3 4/3
10 543.4 371.4 11/8, 15/11, 27/20
11 597.8 408.6 7/5, 10/7, 17/12, 24/17
12 652.1 445.7 16/11, 22/15
13 706.4 482.9 3/2
14 760.8 520.0 11/7, 14/9
15 815.1 557.1 8/5
16 869.5 594.3 5/3, 18/11, 33/20
17 923.8 631.4 12/7, 17/10
18 978.1 668.6 7/4, 30/17
19 1032.5 705.7 9/5, 11/6, 20/11
20 1086.8 742.9 15/8
21 1141.2 780.0 21/11, 27/14
22 1195.5 817.1 2/1
23 1249.9 854.3 33/16, 45/22
24 1304.2 891.4 15/7, 17/8, 21/10, 36/17
25 1358.5 928.6 11/5, 20/9, 24/11
26 1412.9 965.7 9/4
27 1467.2 1002.9 7/3
28 1521.6 1040.0 12/5
29 1575.9 1077.1 5/2
30 1630.2 1114.3 18/7
31 1684.6 1151.4 8/3, 21/8
32 1738.9 1188.6 11/4, 27/10, 30/11
33 1793.3 1225.7 14/5, 17/6, 45/16, 48/17
34 1847.6 1262.9 32/11, 35/12
35 1902.0 1300.0 3/1

* As a 2.3.5.7.11.17-subgroup temperament

See also