Lumatone mapping for 15edo: Difference between revisions
Jump to navigation
Jump to search
ArrowHead294 (talk | contribs) mNo edit summary |
ArrowHead294 (talk | contribs) mNo edit summary |
||
Line 1: | Line 1: | ||
There are several conceivable ways to map [[15edo]] onto the [[Lumatone]] keyboard. However, as it has multiple small rings of 5ths, the [[Standard Lumatone mapping for Pythagorean]] is not one of them. Instead, there is the [[Porcupine]] mapping. | There are several conceivable ways to map [[15edo]] onto the [[Lumatone]] keyboard. However, as it has multiple small rings of 5ths, the [[Standard Lumatone mapping for Pythagorean]] is not one of them. Instead, there is the [[Porcupine]] mapping. | ||
{{Lumatone EDO mapping|n=15|start=0|xstep=2|ystep=-1}} | {{Lumatone EDO mapping|n=15|start=0|xstep=2|ystep=-1}} | ||
The [[Blackwood]] mapping | The [[Blackwood]] mapping | ||
{{Lumatone EDO mapping|n=15|start=13|xstep=3|ystep=-1}} | {{Lumatone EDO mapping|n=15|start=13|xstep=3|ystep=-1}} | ||
Or the [[Kleismic]] mapping. | Or the [[Kleismic]] mapping. |
Revision as of 16:09, 14 March 2025
There are several conceivable ways to map 15edo onto the Lumatone keyboard. However, as it has multiple small rings of 5ths, the Standard Lumatone mapping for Pythagorean is not one of them. Instead, there is the Porcupine mapping.

0
2
1
3
5
7
9
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
0
2
4
6
8
10
12
14
1
3
5
7
9
11
1
3
5
7
9
11
13
0
2
4
6
8
10
12
14
1
3
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
8
1
3
5
7
9
11
13
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
8
10
12
14
1
3
5
3
5
7
9
11
13
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
8
10
12
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
8
10
12
14
5
7
9
11
13
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
12
14
1
3
5
7
9
11
13
0
2
4
6
8
10
12
14
2
4
6
8
10
12
14
1
3
5
7
9
11
13
9
11
13
0
2
4
6
8
10
12
14
14
1
3
5
7
9
11
13
6
8
10
12
14
11
13
The Blackwood mapping

13
1
0
3
6
9
12
14
2
5
8
11
14
2
5
1
4
7
10
13
1
4
7
10
13
1
0
3
6
9
12
0
3
6
9
12
0
3
6
9
2
5
8
11
14
2
5
8
11
14
2
5
8
11
14
2
5
1
4
7
10
13
1
4
7
10
13
1
4
7
10
13
1
4
7
10
13
3
6
9
12
0
3
6
9
12
0
3
6
9
12
0
3
6
9
12
0
3
6
9
2
5
8
11
14
2
5
8
11
14
2
5
8
11
14
2
5
8
11
14
2
5
8
11
14
2
7
10
13
1
4
7
10
13
1
4
7
10
13
1
4
7
10
13
1
4
7
10
13
1
4
7
10
13
0
3
6
9
12
0
3
6
9
12
0
3
6
9
12
0
3
6
9
12
0
3
6
9
12
0
11
14
2
5
8
11
14
2
5
8
11
14
2
5
8
11
14
2
5
8
11
14
2
4
7
10
13
1
4
7
10
13
1
4
7
10
13
1
4
7
10
13
1
0
3
6
9
12
0
3
6
9
12
0
3
6
9
12
0
3
8
11
14
2
5
8
11
14
2
5
8
11
14
2
4
7
10
13
1
4
7
10
13
1
4
12
0
3
6
9
12
0
3
8
11
14
2
5
1
4
Or the Kleismic mapping.

9
13
12
1
5
9
13
11
0
4
8
12
1
5
9
14
3
7
11
0
4
8
12
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
0
4
8
12
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
3
7
11
0
4
8
12
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
2
6
10
14
3
7
11
0
4
8
12
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
9
13
2
6
10
14
3
7
11
0
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
9
13
2
6
10
14
3
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
9
13
2
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
12
1
5
9
13
2
6
10
14
3
7
11
0
4
12
1
5
9
13
2
6
10
14
3
7
8
12
1
5
9
13
2
6
8
12
1
5
9
4
8