Lumatone mapping for 15edo

From Xenharmonic Wiki
Jump to navigation Jump to search

There are many conceivable ways to map 15edo onto the onto the Lumatone keyboard. However, it has 3 mutually-exclusive rings of fifths, so the Standard Lumatone mapping for Pythagorean is not one of them. You can use the extremely flat 8\15 fifth of 640¢. This layout preserves the location of the octave, and places the down-fifth where the fifth usually is.

12
13
2
3
4
5
6
6
7
8
9
10
11
12
13
11
12
13
14
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
8
9
10
11
12
13
5
6
7
8
9
10
11
12
13
14
0
1
2
3
4
5
6
9
10
11
12
13
14
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
0
1
2
3
4
5
6
3
4
5
6
7
8
9
10
11
12
13
14
0
1
2
3
4
5
6
7
8
9
10
11
12
13
9
10
11
12
13
14
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
0
1
2
3
4
5
6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
0
1
2
3
4
5
6
7
8
9
10
11
9
10
11
12
13
14
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
0
1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
0
1
2
3
4
5
9
10
11
12
13
14
0
1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
10
11
12
13
14
9
10
11
12
13
14
0
1
2
3
4
1
2
3
4
5
6
7
8
9
10
11
12
13
1
2

This makes fingerings for most simple chords awkward though. The mappings that organise its intervals that make it easy to find consonant chords, in order of increasing compression, are the Porcupine, Blackwood, and Hanson mappings.

Porcupine

0
2
3
5
7
9
11
4
6
8
10
12
14
1
3
7
9
11
13
0
2
4
6
8
10
12
8
10
12
14
1
3
5
7
9
11
13
0
2
4
11
13
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
12
14
1
3
5
7
9
11
13
0
2
4
6
8
10
12
14
1
3
5
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
6
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
13
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
8
10
12
14
1
3
7
9
11
13
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
14
1
3
5
7
9
11
13
0
2
4
6
8
10
12
14
1
3
5
7
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
8
10
0
2
4
6
8
10
12
14
1
3
5
7
9
11
9
11
13
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
10
12
14
1
3
2
4

Blackwood

13
1
0
3
6
9
12
14
2
5
8
11
14
2
5
1
4
7
10
13
1
4
7
10
13
1
0
3
6
9
12
0
3
6
9
12
0
3
6
9
2
5
8
11
14
2
5
8
11
14
2
5
8
11
14
2
5
1
4
7
10
13
1
4
7
10
13
1
4
7
10
13
1
4
7
10
13
3
6
9
12
0
3
6
9
12
0
3
6
9
12
0
3
6
9
12
0
3
6
9
2
5
8
11
14
2
5
8
11
14
2
5
8
11
14
2
5
8
11
14
2
5
8
11
14
2
7
10
13
1
4
7
10
13
1
4
7
10
13
1
4
7
10
13
1
4
7
10
13
1
4
7
10
13
0
3
6
9
12
0
3
6
9
12
0
3
6
9
12
0
3
6
9
12
0
3
6
9
12
0
11
14
2
5
8
11
14
2
5
8
11
14
2
5
8
11
14
2
5
8
11
14
2
4
7
10
13
1
4
7
10
13
1
4
7
10
13
1
4
7
10
13
1
0
3
6
9
12
0
3
6
9
12
0
3
6
9
12
0
3
8
11
14
2
5
8
11
14
2
5
8
11
14
2
4
7
10
13
1
4
7
10
13
1
4
12
0
3
6
9
12
0
3
8
11
14
2
5
1
4

Hanson

9
13
12
1
5
9
13
11
0
4
8
12
1
5
9
14
3
7
11
0
4
8
12
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
0
4
8
12
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
3
7
11
0
4
8
12
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
2
6
10
14
3
7
11
0
4
8
12
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
9
13
2
6
10
14
3
7
11
0
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
9
13
2
6
10
14
3
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
9
13
2
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
12
1
5
9
13
2
6
10
14
3
7
11
0
4
12
1
5
9
13
2
6
10
14
3
7
8
12
1
5
9
13
2
6
8
12
1
5
9
4
8


ViewTalkEditLumatone mappings 
12edo13edo14edoLumatone mapping for 15edo16edo17edo18edo