Lumatone mapping for 13edo

From Xenharmonic Wiki
Jump to navigation Jump to search

There are several possible ways to map 13edo onto the onto the Lumatone keyboard. However, none of them even remotely approximate the Standard Lumatone mapping for Pythagorean. The following mapping for 13edo can be used for every MOS scale in 13edo with L = 2\13 and s = 1\13, such as 5L 3s and 6L 1s.

0
2
1
3
5
7
9
0
2
4
6
8
10
12
1
1
3
5
7
9
11
0
2
4
6
8
0
2
4
6
8
10
12
1
3
5
7
9
11
0
1
3
5
7
9
11
0
2
4
6
8
10
12
1
3
5
7
0
2
4
6
8
10
12
1
3
5
7
9
11
0
2
4
6
8
10
12
1
3
5
7
9
11
0
2
4
6
8
10
12
1
3
5
7
9
11
0
2
4
6
0
2
4
6
8
10
12
1
3
5
7
9
11
0
2
4
6
8
10
12
1
3
5
7
9
11
3
5
7
9
11
0
2
4
6
8
10
12
1
3
5
7
9
11
0
2
4
6
8
10
12
1
3
5
8
10
12
1
3
5
7
9
11
0
2
4
6
8
10
12
1
3
5
7
9
11
0
2
4
6
2
4
6
8
10
12
1
3
5
7
9
11
0
2
4
6
8
10
12
1
3
5
7
7
9
11
0
2
4
6
8
10
12
1
3
5
7
9
11
0
2
4
6
1
3
5
7
9
11
0
2
4
6
8
10
12
1
3
5
7
6
8
10
12
1
3
5
7
9
11
0
2
4
6
0
2
4
6
8
10
12
1
3
5
7
5
7
9
11
0
2
4
6
12
1
3
5
7
4
6

Since 13edo is a small edo, you can compress this down to a 2L 1s scale that extends range past human hearing and puts all kinds of intervals within easy reach in different directions while still having a moderate number of repeated notes.

12
4
2
7
12
4
9
0
5
10
2
7
12
4
9
3
8
0
5
10
2
7
12
4
9
1
1
6
11
3
8
0
5
10
2
7
12
4
9
1
4
9
1
6
11
3
8
0
5
10
2
7
12
4
9
1
6
2
7
12
4
9
1
6
11
3
8
0
5
10
2
7
12
4
9
1
6
5
10
2
7
12
4
9
1
6
11
3
8
0
5
10
2
7
12
4
9
1
6
11
3
8
0
5
10
2
7
12
4
9
1
6
11
3
8
0
5
10
2
7
12
4
9
1
6
11
11
3
8
0
5
10
2
7
12
4
9
1
6
11
3
8
0
5
10
2
7
12
4
9
1
6
11
3
11
3
8
0
5
10
2
7
12
4
9
1
6
11
3
8
0
5
10
2
7
12
4
9
1
6
3
8
0
5
10
2
7
12
4
9
1
6
11
3
8
0
5
10
2
7
12
4
9
3
8
0
5
10
2
7
12
4
9
1
6
11
3
8
0
5
10
2
7
8
0
5
10
2
7
12
4
9
1
6
11
3
8
0
5
10
8
0
5
10
2
7
12
4
9
1
6
11
3
8
0
5
10
2
7
12
4
9
1
6
11
0
5
10
2
7
12
4
9
5
10
2
7
12
5
10


ViewTalkEditLumatone mappings 
10edo11edo12edoLumatone mapping for 13edo14edo15edo16edo