131edt: Difference between revisions
added tempered out commas and supported temperaments |
ArrowHead294 (talk | contribs) mNo edit summary |
||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
'''131edt''' is the [[EDT|equal division of the third harmonic]] into 131 parts of 14.5187 [[cent|cents]] each, corresponding to 82.6520 [[edo]] (similar to every third step of [[248edo]]). It is notable for consistency to the no-evens | '''131edt''' is the [[EDT|equal division of the third harmonic]] into 131 parts of 14.5187 [[cent|cents]] each, corresponding to 82.6520 [[edo]] (similar to every third step of [[248edo]]). It is notable for consistency to the no-evens 27-[[odd limit#Nonoctave equaves|throdd limit]]. Furthermore, several higher primes, including 29, 31, 37, 43, and 53, lie at close to halfway between 131edt's steps; therefore [[262edt]], which doubles it, improves representation of a large spectrum of primes, though it loses consistency of a few intervals of 19. | ||
131edt is the 16th [[The_Riemann_Zeta_Function_and_Tuning#Removing primes|no-twos zeta peak EDT]]. | 131edt is the 16th [[The_Riemann_Zeta_Function_and_Tuning#Removing primes|no-twos zeta peak EDT]], and is the smallest EDT to be [[purely consistent]]{{idio}} in the 27-odd-limit (i.e. maintains no greater than 25% relative error on all odd harmonocs up to and including 27). | ||
== Theory == | == Theory == |
Revision as of 15:53, 2 March 2025
← 130edt | 131edt | 132edt → |
131edt is the equal division of the third harmonic into 131 parts of 14.5187 cents each, corresponding to 82.6520 edo (similar to every third step of 248edo). It is notable for consistency to the no-evens 27-throdd limit. Furthermore, several higher primes, including 29, 31, 37, 43, and 53, lie at close to halfway between 131edt's steps; therefore 262edt, which doubles it, improves representation of a large spectrum of primes, though it loses consistency of a few intervals of 19.
131edt is the 16th no-twos zeta peak EDT, and is the smallest EDT to be purely consistent[idiosyncratic term] in the 27-odd-limit (i.e. maintains no greater than 25% relative error on all odd harmonocs up to and including 27).
Theory
131edt is strong in the 3.5.7.11.13.17.19.23 subgroup, tempering out 1377/1375, 1575/1573, 3591/3575, 4459/4455, 1617/1615 and 6561/6545. Additionally, 131edt tempers out 3213/3211 in the 3.7.13.17.19 subgroup and 2205/2197 in the 3.5.7.13 subgroup. It supports procyon, erigone, hemigone and mebsuta.
Intervals
Steps | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0 | 0 | 1/1 |
1 | 14.5 | 9.9 | |
2 | 29 | 19.8 | |
3 | 43.6 | 29.8 | 39/38 |
4 | 58.1 | 39.7 | 30/29 |
5 | 72.6 | 49.6 | 49/47 |
6 | 87.1 | 59.5 | 41/39 |
7 | 101.6 | 69.5 | 35/33 |
8 | 116.1 | 79.4 | |
9 | 130.7 | 89.3 | 41/38 |
10 | 145.2 | 99.2 | 25/23, 37/34 |
11 | 159.7 | 109.2 | 45/41 |
12 | 174.2 | 119.1 | 21/19 |
13 | 188.7 | 129 | 29/26, 39/35 |
14 | 203.3 | 138.9 | |
15 | 217.8 | 148.9 | 17/15, 42/37 |
16 | 232.3 | 158.8 | |
17 | 246.8 | 168.7 | 15/13 |
18 | 261.3 | 178.6 | |
19 | 275.9 | 188.5 | 27/23, 34/29 |
20 | 290.4 | 198.5 | 13/11 |
21 | 304.9 | 208.4 | |
22 | 319.4 | 218.3 | |
23 | 333.9 | 228.2 | |
24 | 348.4 | 238.2 | 11/9 |
25 | 363 | 248.1 | 37/30 |
26 | 377.5 | 258 | 41/33, 46/37, 51/41 |
27 | 392 | 267.9 | |
28 | 406.5 | 277.9 | |
29 | 421 | 287.8 | 37/29 |
30 | 435.6 | 297.7 | 9/7 |
31 | 450.1 | 307.6 | 35/27 |
32 | 464.6 | 317.6 | 17/13 |
33 | 479.1 | 327.5 | 29/22, 33/25 |
34 | 493.6 | 337.4 | |
35 | 508.2 | 347.3 | 51/38 |
36 | 522.7 | 357.3 | 23/17, 50/37 |
37 | 537.2 | 367.2 | 15/11 |
38 | 551.7 | 377.1 | |
39 | 566.2 | 387 | 43/31 |
40 | 580.7 | 396.9 | 7/5 |
41 | 595.3 | 406.9 | |
42 | 609.8 | 416.8 | 27/19, 37/26 |
43 | 624.3 | 426.7 | 33/23 |
44 | 638.8 | 436.6 | |
45 | 653.3 | 446.6 | 51/35 |
46 | 667.9 | 456.5 | 25/17 |
47 | 682.4 | 466.4 | |
48 | 696.9 | 476.3 | |
49 | 711.4 | 486.3 | |
50 | 725.9 | 496.2 | 35/23, 38/25 |
51 | 740.5 | 506.1 | 23/15 |
52 | 755 | 516 | 17/11 |
53 | 769.5 | 526 | 39/25 |
54 | 784 | 535.9 | 11/7 |
55 | 798.5 | 545.8 | 46/29 |
56 | 813 | 555.7 | |
57 | 827.6 | 565.6 | |
58 | 842.1 | 575.6 | |
59 | 856.6 | 585.5 | 41/25 |
60 | 871.1 | 595.4 | |
61 | 885.6 | 605.3 | 5/3 |
62 | 900.2 | 615.3 | 37/22 |
63 | 914.7 | 625.2 | 39/23 |
64 | 929.2 | 635.1 | |
65 | 943.7 | 645 | 50/29 |
66 | 958.2 | 655 | 47/27 |
67 | 972.8 | 664.9 | |
68 | 987.3 | 674.8 | 23/13 |
69 | 1001.8 | 684.7 | 41/23 |
70 | 1016.3 | 694.7 | 9/5 |
71 | 1030.8 | 704.6 | 49/27 |
72 | 1045.3 | 714.5 | |
73 | 1059.9 | 724.4 | |
74 | 1074.4 | 734.4 | |
75 | 1088.9 | 744.3 | |
76 | 1103.4 | 754.2 | |
77 | 1117.9 | 764.1 | 21/11 |
78 | 1132.5 | 774 | 25/13 |
79 | 1147 | 784 | 33/17 |
80 | 1161.5 | 793.9 | 45/23 |
81 | 1176 | 803.8 | |
82 | 1190.5 | 813.7 | |
83 | 1205.1 | 823.7 | |
84 | 1219.6 | 833.6 | |
85 | 1234.1 | 843.5 | 51/25 |
86 | 1248.6 | 853.4 | 35/17, 37/18 |
87 | 1263.1 | 863.4 | |
88 | 1277.6 | 873.3 | 23/11 |
89 | 1292.2 | 883.2 | 19/9 |
90 | 1306.7 | 893.1 | |
91 | 1321.2 | 903.1 | 15/7 |
92 | 1335.7 | 913 | |
93 | 1350.2 | 922.9 | |
94 | 1364.8 | 932.8 | 11/5 |
95 | 1379.3 | 942.7 | 51/23 |
96 | 1393.8 | 952.7 | 38/17, 47/21 |
97 | 1408.3 | 962.6 | |
98 | 1422.8 | 972.5 | 25/11 |
99 | 1437.4 | 982.4 | 39/17 |
100 | 1451.9 | 992.4 | |
101 | 1466.4 | 1002.3 | 7/3 |
102 | 1480.9 | 1012.2 | |
103 | 1495.4 | 1022.1 | |
104 | 1509.9 | 1032.1 | |
105 | 1524.5 | 1042 | 41/17 |
106 | 1539 | 1051.9 | |
107 | 1553.5 | 1061.8 | 27/11 |
108 | 1568 | 1071.8 | 47/19 |
109 | 1582.5 | 1081.7 | |
110 | 1597.1 | 1091.6 | |
111 | 1611.6 | 1101.5 | 33/13 |
112 | 1626.1 | 1111.5 | 23/9 |
113 | 1640.6 | 1121.4 | 49/19 |
114 | 1655.1 | 1131.3 | 13/5 |
115 | 1669.7 | 1141.2 | |
116 | 1684.2 | 1151.1 | 37/14, 45/17 |
117 | 1698.7 | 1161.1 | |
118 | 1713.2 | 1171 | 35/13 |
119 | 1727.7 | 1180.9 | 19/7 |
120 | 1742.2 | 1190.8 | 41/15 |
121 | 1756.8 | 1200.8 | |
122 | 1771.3 | 1210.7 | |
123 | 1785.8 | 1220.6 | |
124 | 1800.3 | 1230.5 | |
125 | 1814.8 | 1240.5 | |
126 | 1829.4 | 1250.4 | |
127 | 1843.9 | 1260.3 | 29/10 |
128 | 1858.4 | 1270.2 | 38/13 |
129 | 1872.9 | 1280.2 | |
130 | 1887.4 | 1290.1 | |
131 | 1902 | 1300 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +5.06 | +0.00 | +1.28 | -0.48 | +1.04 | +2.21 | +2.38 | -1.44 | +1.73 |
Relative (%) | +34.8 | +0.0 | +8.8 | -3.3 | +7.2 | +15.2 | +16.4 | -9.9 | +11.9 | |
Steps (reduced) |
83 (83) |
131 (0) |
192 (61) |
232 (101) |
286 (24) |
306 (44) |
338 (76) |
351 (89) |
374 (112) |
Harmonic | 25 | 27 | 29 | 31 | 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47 | 49 | 51 | 53 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.57 | +0.00 | +6.96 | -6.87 | +1.04 | +0.81 | +6.23 | +2.21 | +2.74 | -7.12 | +1.28 | -1.40 | -0.96 | +2.38 | -6.14 |
Relative (%) | +17.7 | +0.0 | +47.9 | -47.3 | +7.2 | +5.6 | +42.9 | +15.2 | +18.9 | -49.1 | +8.8 | -9.7 | -6.6 | +16.4 | -42.3 | |
Steps (reduced) |
384 (122) |
393 (0) |
402 (9) |
409 (16) |
417 (24) |
424 (31) |
431 (38) |
437 (44) |
443 (50) |
448 (55) |
454 (61) |
459 (66) |
464 (71) |
469 (76) |
473 (80) |