41edt: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
BudjarnLambeth (talk | contribs)
m Fix misleading link, {{todo|expand}}
Tags: Mobile edit Mobile web edit
Line 12: Line 12:
| num = 3
| num = 3
| denom = 1
| denom = 1
| intervals = integer
| intervals = prime
| columns = 30
}}
}}
{{Harmonics in equal
{{Harmonics in equal
Line 18: Line 19:
| num = 3
| num = 3
| denom = 1
| denom = 1
| start = 12
| start = 31
| collapsed = 1
| collapsed = 1
| intervals = integer
| intervals = prime
| columns = 30
}}
}}



Revision as of 13:26, 20 January 2025

← 40edt 41edt 42edt →
Prime factorization 41 (prime)
Step size 46.3891 ¢ 
Octave 26\41edt (1206.12 ¢)
Consistency limit 10
Distinct consistency limit 9

Division of the third harmonic into 41 equal parts (41edt) is related to 26 edo, but with the 3/1 rather than the 2/1 being just. The octave is about 6.1178 cents stretched and the step size is about 46.3891 cents. Unlike 26edo, it is only consistent up to the 10-integer-limit, with discrepancy for the 11th harmonic.

41edt is related to the regular temperament which tempers out 823543/820125 and 2199023255552/2197176384375 in the 7-limit, which is supported by 181, 207, 388, 569, and 595 EDOs.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 46.4 31.7
2 92.8 63.4 18/17, 19/18, 20/19
3 139.2 95.1 13/12, 25/23, 27/25
4 185.6 126.8 10/9, 19/17, 29/26
5 231.9 158.5 8/7
6 278.3 190.2 20/17, 27/23
7 324.7 222 23/19, 29/24
8 371.1 253.7 21/17, 26/21
9 417.5 285.4 23/18
10 463.9 317.1 17/13, 21/16, 30/23
11 510.3 348.8
12 556.7 380.5 18/13, 29/21
13 603.1 412.2 17/12, 24/17, 27/19
14 649.4 443.9 29/20
15 695.8 475.6 3/2
16 742.2 507.3 20/13, 23/15, 26/17
17 788.6 539 19/12, 30/19
18 835 570.7 13/8, 21/13
19 881.4 602.4 5/3
20 927.8 634.1 12/7, 29/17
21 974.2 665.9 7/4
22 1020.6 697.6 9/5
23 1067 729.3 13/7, 24/13
24 1113.3 761 19/10
25 1159.7 792.7
26 1206.1 824.4 2/1
27 1252.5 856.1
28 1298.9 887.8 17/8, 19/9
29 1345.3 919.5 13/6
30 1391.7 951.2 29/13
31 1438.1 982.9 16/7, 23/10
32 1484.5 1014.6
33 1530.8 1046.3 17/7, 29/12
34 1577.2 1078
35 1623.6 1109.8 23/9
36 1670 1141.5 21/8
37 1716.4 1173.2 27/10
38 1762.8 1204.9 25/9
39 1809.2 1236.6 17/6
40 1855.6 1268.3
41 1902 1300 3/1

Harmonics

Approximation of prime harmonics in 41edt
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113
Error Absolute (¢) +6.1 +0.0 -3.0 +17.6 -22.7 +12.8 +12.3 +5.3 -0.7 +15.5 -7.2 +11.2 +19.0 -17.0 +14.5 -7.9 -8.0 -19.3 +3.8 -3.8 -5.5 -3.1 +4.2 +22.5 +12.6 -10.9 +1.5 -18.0 -3.7 -19.7
Relative (%) +13.2 +0.0 -6.4 +37.9 -48.9 +27.7 +26.5 +11.4 -1.6 +33.3 -15.6 +24.1 +41.0 -36.7 +31.3 -17.1 -17.3 -41.7 +8.2 -8.2 -11.9 -6.7 +9.0 +48.5 +27.3 -23.5 +3.3 -38.9 -8.0 -42.5
Steps
(reduced)
26
(26)
41
(0)
60
(19)
73
(32)
89
(7)
96
(14)
106
(24)
110
(28)
117
(35)
126
(3)
128
(5)
135
(12)
139
(16)
140
(17)
144
(21)
148
(25)
152
(29)
153
(30)
157
(34)
159
(36)
160
(37)
163
(40)
165
(1)
168
(4)
171
(7)
172
(8)
173
(9)
174
(10)
175
(11)
176
(12)
Approximation of prime harmonics in 41edt
Harmonic 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229
Error Absolute (¢) +10.0 +2.7 +18.0 -7.1 +11.8 -11.3 +14.0 -4.5 -0.1 -14.8 +18.9 -0.3 -0.6 -18.7 -7.8 +21.1 +12.5 +9.5 -21.3 +10.0
Relative (%) +21.6 +5.9 +38.7 -15.4 +25.4 -24.4 +30.2 -9.8 -0.3 -32.0 +40.8 -0.7 -1.4 -40.3 -16.8 +45.5 +27.0 +20.5 -45.8 +21.5
Steps
(reduced)
181
(17)
182
(18)
184
(20)
184
(20)
187
(23)
187
(23)
189
(25)
190
(26)
191
(27)
192
(28)
194
(30)
194
(30)
196
(32)
196
(32)
197
(33)
198
(34)
200
(36)
202
(38)
202
(38)
203
(39)

Related regular temperaments

181&207 temperament

5-limit

Comma: |287 -121 -41>

POTE generator: ~|140 -59 -20> = 46.3927

Mapping: [<1 0 7|, <0 41 -121|]

EDOs: 181, 207, 388, 569, 595, 957, 1345

Badness: 17.5651

7-limit

Commas: 823543/820125, 2199023255552/2197176384375

POTE generator: ~131072/127575 = 46.3932

Mapping: [<1 0 7 3|, <0 41 -121 -5|]

EDOs: 181, 207, 388, 569, 595

Badness: 0.6461

11-limit

Commas: 42592/42525, 43923/43904, 184877/184320

POTE generator: ~352/343 = 46.3934

Mapping: [<1 0 7 3 4|, <0 41 -121 -5 -14|]

EDOs: 181, 207, 388, 569, 595

Badness: 0.1362

13-limit

Commas: 847/845, 4096/4095, 4459/4455, 17303/17280

POTE generator: ~352/343 = 46.3921

Mapping: [<1 0 7 3 4 2|, <0 41 -121 -5 -14 44|]

EDOs: 181, 207, 388, 569, 595

Badness: 0.0707

17-limit

Commas: 833/832, 847/845, 1089/1088, 2058/2057, 2431/2430

POTE generator: ~187/182 = 46.3918

Mapping: [<1 0 7 3 4 2 2|, <0 41 -121 -5 -14 44 54|]

EDOs: 181, 207, 388, 569, 595

Badness: 0.0411

26&388 temperament

5-limit

Comma: |-41 146 -82>

POTE generator: ~|-16 57 -32> = 46.3883

Mapping: [<2 0 -1|, <0 41 73|]

EDOs: 26, 388, 414, 802, 1190, 1578, 1966, 2354

Badness: 3.9285

7-limit

Commas: 4375/4374, |-62 -1 2 21>

POTE generator: ~17294403/16777216 = 46.3835

Mapping: [<2 0 -1 6|, <0 41 73 -5|]

EDOs: 26, 362, 388, 414, 802

Badness: 0.4543

11-limit

Commas: 3025/3024, 4375/4374, 5931980229/5905580032

POTE generator: ~352/343 = 46.3827

Mapping: [<2 0 -1 6 8|, <0 41 73 -5 -14|]

EDOs: 26, 362, 388, 414, 802

Badness: 0.1020

13-limit

Commas: 2200/2197, 3025/3024, 4375/4374, 50421/50336

POTE generator: ~352/343 = 46.3825

Mapping: [<2 0 -1 6 8 4|, <0 41 73 -5 -14 44|]

EDOs: 26, 362, 388, 414, 802

Badness: 0.0595

17-limit

Commas: 833/832, 1089/1088, 1225/1224, 1701/1700, 2200/2197

POTE generator: ~187/182 = 46.3824

Mapping: [<2 0 -1 6 8 4 4|, <0 41 73 -5 -14 44 54|]

EDOs: 26, 362, 388, 414, 802

Badness: 0.0326