26edf: Difference between revisions
Jump to navigation
Jump to search
m stub mbox, put harmonics in own section, break too-wide harmonic table into 2 smaller ones for better small screen experience, make table collapsible |
m →Intervals: table title row |
||
Line 8: | Line 8: | ||
==Intervals== | ==Intervals== | ||
{| class="wikitable mw-collapsible" | {| class="wikitable mw-collapsible" | ||
|+ Intervals of 26edf | |||
|- | |- | ||
! | degree | ! | degree |
Revision as of 06:18, 19 December 2024
← 25edf | 26edf | 27edf → |
26EDF is the equal division of the just perfect fifth into 26 parts of 26.9983 cents each, corresponding to 44.4473 edo. It is nearly identical to every ninth step of 400edo.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -12.1 | -12.1 | +2.8 | -5.5 | +2.8 | +6.0 | -9.2 | +2.8 |
Relative (%) | -44.7 | -44.7 | +10.5 | -20.3 | +10.5 | +22.1 | -34.2 | +10.5 | |
Steps (reduced) |
44 (18) |
70 (18) |
89 (11) |
103 (25) |
115 (11) |
125 (21) |
133 (3) |
141 (11) |
Harmonic | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |
---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +9.4 | +6.4 | -9.2 | -12.8 | -6.1 | +9.4 | +5.7 | +8.7 |
Relative (%) | +34.9 | +23.8 | -34.2 | -47.5 | -22.7 | +34.9 | +21.1 | +32.3 | |
Steps (reduced) |
148 (18) |
154 (24) |
159 (3) |
164 (8) |
169 (13) |
174 (18) |
178 (22) |
182 (0) |
Intervals
degree | cents value | corresponding JI intervals |
comments |
---|---|---|---|
0 | exact 1/1 | ||
1 | 26.9983 | 66/65, 65/64, 64/63 | |
2 | 53.9965 | 33/32, 98/95 | |
3 | 80.9948 | 22/21 | |
4 | 107.9931 | 16/15 | |
5 | 134.9913 | ||
6 | 161.9896 | ||
7 | 188.9879 | 135/121 | |
8 | 215.9862 | 17/15 | |
9 | 242.9844 | ||
10 | 269.9827 | 7/6 | |
11 | 296.981 | 32/27, 19/16 | |
12 | 323.9792 | pseudo-6/5 | |
13 | 350.9775 | 60/49, 49/40 | |
14 | 377.9758 | pseudo-5/4 | |
15 | 404.974 | 24/19 | |
16 | 431.9723 | ||
17 | 458.9706 | ||
18 | 485.9688 | 45/34 | pseudo-4/3 |
19 | 512.9671 | 121/90 | |
20 | 539.9654 | ||
21 | 566.9637 | ||
22 | 593.9619 | ||
23 | 620.9602 | 63/44 | |
24 | 647.9585 | 16/11 | |
25 | 674.9567 | ||
26 | 701.955 | exact 3/2 | just perfect fifth |
27 | 728.9533 | 99/65, 195/128, 21/16 | |
28 | 755.9515 | 99/64, 147/95 | |
29 | 782.9498 | 11/7 | |
30 | 809.9481 | 8/5 | |
31 | 836.9463 | ||
32 | 863.9446 | ||
33 | 890.9429 | 405/242 | pseudo-5/3 |
34 | 917.9412 | 17/10 | |
35 | 944.9394 | ||
36 | 971.9377 | 7/4 | |
37 | 998.936 | 16/9, 57/32 | |
38 | 1025.9342 | pseudo-9/5 | |
39 | 1052.9325 | 90/49, 147/80 | |
40 | 1079.9308 | pseudo-15/8 | |
41 | 1106.929 | ||
42 | 1133.9273 | ||
43 | 1160.9256 | ||
44 | 1187.9238 | 135/98 | pseudo-2/1 |
45 | 1214.9221 | 121/60 | |
46 | 1241.9204 | ||
47 | 1268.9187 | ||
48 | 1295.9169 | ||
49 | 1322.9152 | 189/88 | |
50 | 1349.9135 | 24/11 | |
51 | 1376.9117 | ||
52 | 1403.91 | exact 9/4 |
![]() |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |