93edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Yourmusic Productions (talk | contribs)
m Fix wrong temperament reference, link blank ones.
Yourmusic Productions (talk | contribs)
m Grammar.
Line 3: Line 3:


== Theory ==
== Theory ==
93 = 3 × 31, and 93edo is a [[contorted]] [[31edo]] through the [[7-limit]]. In the 11-limit the [[patent val]] [[tempering out|tempers out]] [[4000/3993]] and in the 13-limit [[144/143]], [[1188/1183]] and [[364/363]]. It provides the [[optimal patent val]] for the 11-limit [[31st-octave_temperaments#Prajapati|prajapati]] and 13-limit [[31st-octave_temperaments#Kumhar|kumhar]] temperaments, and the 11- and 13-limit [[Meantone_family#Trimean|trimean]] (43 & 50) temperament. It is the 13th no-3s [[zeta peak edo]]. The bd val is close to the 9-limit minimax tuning for [[superpyth]].
93 = 3 × 31, and 93edo is a [[contorted]] [[31edo]] through the [[7-limit]]. In the 11-limit the [[patent val]] [[tempering out|tempers out]] [[4000/3993]] and in the 13-limit [[144/143]], [[1188/1183]] and [[364/363]]. It provides the [[optimal patent val]] for the 11-limit [[31st-octave_temperaments#Prajapati|prajapati]] and 13-limit [[31st-octave_temperaments#Kumhar|kumhar]] temperaments, and the 11- and 13-limit [[Meantone_family#Trimean|trimean]] (43 & 50) temperament. It is the 13th no-3s [[zeta peak edo]]. The bd val is close to the 9-odd limit minimax tuning for [[superpyth]].


Since 93edo has good approximations of [[13/1|13th]], [[17/1|17th]] and [[19/1|19th]] [[harmonic]]s unlike 31edo (as 838.710{{cent}}, 103.226{{cent}}, and 296.774{{cent}} respectively, [[octave-reduced]]), it also allows one to give a clearer harmonic identity to [[31edo]]'s excellent approximation of 13:17:19.
Since 93edo has good approximations of [[13/1|13th]], [[17/1|17th]] and [[19/1|19th]] [[harmonic]]s unlike 31edo (as 838.710{{cent}}, 103.226{{cent}}, and 296.774{{cent}} respectively, [[octave-reduced]]), it also allows one to give a clearer harmonic identity to [[31edo]]'s excellent approximation of 13:17:19.

Revision as of 17:45, 7 December 2024

← 92edo 93edo 94edo →
Prime factorization 3 × 31
Step size 12.9032 ¢ 
Fifth 54\93 (696.774 ¢) (→ 18\31)
Semitones (A1:m2) 6:9 (77.42 ¢ : 116.1 ¢)
Dual sharp fifth 55\93 (709.677 ¢)
Dual flat fifth 54\93 (696.774 ¢) (→ 18\31)
Dual major 2nd 16\93 (206.452 ¢)
Consistency limit 7
Distinct consistency limit 7

Template:EDO intro

Theory

93 = 3 × 31, and 93edo is a contorted 31edo through the 7-limit. In the 11-limit the patent val tempers out 4000/3993 and in the 13-limit 144/143, 1188/1183 and 364/363. It provides the optimal patent val for the 11-limit prajapati and 13-limit kumhar temperaments, and the 11- and 13-limit trimean (43 & 50) temperament. It is the 13th no-3s zeta peak edo. The bd val is close to the 9-odd limit minimax tuning for superpyth.

Since 93edo has good approximations of 13th, 17th and 19th harmonics unlike 31edo (as 838.710 ¢, 103.226 ¢, and 296.774 ¢ respectively, octave-reduced), it also allows one to give a clearer harmonic identity to 31edo's excellent approximation of 13:17:19.

Odd harmonics

Approximation of odd harmonics in 93edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -5.18 +0.78 -1.08 +2.54 +3.52 -1.82 -4.40 -1.73 -0.74 -6.26 +3.98
Relative (%) -40.2 +6.1 -8.4 +19.7 +27.3 -14.1 -34.1 -13.4 -5.7 -48.6 +30.9
Steps
(reduced)
147
(54)
216
(30)
261
(75)
295
(16)
322
(43)
344
(65)
363
(84)
380
(8)
395
(23)
408
(36)
421
(49)

Intervals

Steps Cents Approximate ratios Ups and downs notation
(Dual flat fifth 54\93)
Ups and downs notation
(Dual sharp fifth 55\93)
0 0 1/1 D D
1 12.9 ^D, vvE♭♭ ^D, v3E♭
2 25.8 ^^D, vE♭♭ ^^D, vvE♭
3 38.7 ^3D, E♭♭ ^3D, vE♭
4 51.6 33/32, 34/33, 35/34 vvD♯, ^E♭♭ ^4D, E♭
5 64.5 vD♯, ^^E♭♭ ^5D, ^E♭
6 77.4 23/22 D♯, v3E♭ ^6D, ^^E♭
7 90.3 20/19, 39/37 ^D♯, vvE♭ v6D♯, ^3E♭
8 103.2 17/16, 35/33 ^^D♯, vE♭ v5D♯, ^4E♭
9 116.1 31/29 ^3D♯, E♭ v4D♯, ^5E♭
10 129 14/13, 41/38 vvD𝄪, ^E♭ v3D♯, ^6E♭
11 141.9 25/23, 38/35 vD𝄪, ^^E♭ vvD♯, v6E
12 154.8 35/32 D𝄪, v3E vD♯, v5E
13 167.7 32/29 ^D𝄪, vvE D♯, v4E
14 180.6 ^^D𝄪, vE ^D♯, v3E
15 193.5 19/17, 28/25 E ^^D♯, vvE
16 206.5 ^E, vvF♭ ^3D♯, vE
17 219.4 17/15, 25/22, 42/37 ^^E, vF♭ E
18 232.3 8/7 ^3E, F♭ ^E, v3F
19 245.2 15/13, 38/33 vvE♯, ^F♭ ^^E, vvF
20 258.1 29/25 vE♯, ^^F♭ ^3E, vF
21 271 E♯, v3F F
22 283.9 20/17, 33/28 ^E♯, vvF ^F, v3G♭
23 296.8 19/16 ^^E♯, vF ^^F, vvG♭
24 309.7 F ^3F, vG♭
25 322.6 41/34 ^F, vvG♭♭ ^4F, G♭
26 335.5 17/14, 40/33 ^^F, vG♭♭ ^5F, ^G♭
27 348.4 ^3F, G♭♭ ^6F, ^^G♭
28 361.3 16/13, 37/30 vvF♯, ^G♭♭ v6F♯, ^3G♭
29 374.2 31/25, 41/33 vF♯, ^^G♭♭ v5F♯, ^4G♭
30 387.1 5/4 F♯, v3G♭ v4F♯, ^5G♭
31 400 29/23 ^F♯, vvG♭ v3F♯, ^6G♭
32 412.9 33/26 ^^F♯, vG♭ vvF♯, v6G
33 425.8 32/25 ^3F♯, G♭ vF♯, v5G
34 438.7 40/31 vvF𝄪, ^G♭ F♯, v4G
35 451.6 13/10 vF𝄪, ^^G♭ ^F♯, v3G
36 464.5 17/13 F𝄪, v3G ^^F♯, vvG
37 477.4 25/19, 29/22 ^F𝄪, vvG ^3F♯, vG
38 490.3 ^^F𝄪, vG G
39 503.2 G ^G, v3A♭
40 516.1 31/23, 35/26 ^G, vvA♭♭ ^^G, vvA♭
41 529 19/14 ^^G, vA♭♭ ^3G, vA♭
42 541.9 26/19, 41/30 ^3G, A♭♭ ^4G, A♭
43 554.8 40/29 vvG♯, ^A♭♭ ^5G, ^A♭
44 567.7 43/31 vG♯, ^^A♭♭ ^6G, ^^A♭
45 580.6 7/5 G♯, v3A♭ v6G♯, ^3A♭
46 593.5 31/22 ^G♯, vvA♭ v5G♯, ^4A♭
47 606.5 ^^G♯, vA♭ v4G♯, ^5A♭
48 619.4 10/7 ^3G♯, A♭ v3G♯, ^6A♭
49 632.3 vvG𝄪, ^A♭ vvG♯, v6A
50 645.2 29/20 vG𝄪, ^^A♭ vG♯, v5A
51 658.1 19/13, 41/28 G𝄪, v3A G♯, v4A
52 671 28/19 ^G𝄪, vvA ^G♯, v3A
53 683.9 43/29 ^^G𝄪, vA ^^G♯, vvA
54 696.8 A ^3G♯, vA
55 709.7 ^A, vvB♭♭ A
56 722.6 38/25 ^^A, vB♭♭ ^A, v3B♭
57 735.5 26/17 ^3A, B♭♭ ^^A, vvB♭
58 748.4 20/13, 37/24 vvA♯, ^B♭♭ ^3A, vB♭
59 761.3 31/20 vA♯, ^^B♭♭ ^4A, B♭
60 774.2 25/16 A♯, v3B♭ ^5A, ^B♭
61 787.1 41/26 ^A♯, vvB♭ ^6A, ^^B♭
62 800 ^^A♯, vB♭ v6A♯, ^3B♭
63 812.9 8/5 ^3A♯, B♭ v5A♯, ^4B♭
64 825.8 vvA𝄪, ^B♭ v4A♯, ^5B♭
65 838.7 13/8 vA𝄪, ^^B♭ v3A♯, ^6B♭
66 851.6 A𝄪, v3B vvA♯, v6B
67 864.5 28/17, 33/20 ^A𝄪, vvB vA♯, v5B
68 877.4 ^^A𝄪, vB A♯, v4B
69 890.3 B ^A♯, v3B
70 903.2 32/19 ^B, vvC♭ ^^A♯, vvB
71 916.1 17/10 ^^B, vC♭ ^3A♯, vB
72 929 41/24 ^3B, C♭ B
73 941.9 vvB♯, ^C♭ ^B, v3C
74 954.8 26/15, 33/19 vB♯, ^^C♭ ^^B, vvC
75 967.7 7/4 B♯, v3C ^3B, vC
76 980.6 30/17, 37/21 ^B♯, vvC C
77 993.5 ^^B♯, vC ^C, v3D♭
78 1006.5 25/14, 34/19 C ^^C, vvD♭
79 1019.4 ^C, vvD♭♭ ^3C, vD♭
80 1032.3 29/16 ^^C, vD♭♭ ^4C, D♭
81 1045.2 ^3C, D♭♭ ^5C, ^D♭
82 1058.1 35/19 vvC♯, ^D♭♭ ^6C, ^^D♭
83 1071 13/7 vC♯, ^^D♭♭ v6C♯, ^3D♭
84 1083.9 43/23 C♯, v3D♭ v5C♯, ^4D♭
85 1096.8 32/17 ^C♯, vvD♭ v4C♯, ^5D♭
86 1109.7 19/10 ^^C♯, vD♭ v3C♯, ^6D♭
87 1122.6 ^3C♯, D♭ vvC♯, v6D
88 1135.5 vvC𝄪, ^D♭ vC♯, v5D
89 1148.4 33/17 vC𝄪, ^^D♭ C♯, v4D
90 1161.3 43/22 C𝄪, v3D ^C♯, v3D
91 1174.2 ^C𝄪, vvD ^^C♯, vvD
92 1187.1 ^^C𝄪, vD ^3C♯, vD
93 1200 2/1 D D

Scales

  • Superpyth[5]: 21 17 17 21 17 ((21 38 55 76 93)\93)
  • Superpyth[12]: 4 13 4 13 4 13 4 4 13 4 13 4 ((4 17 21 34 38 51 55 59 72 76 89 93)\93)
  • Superpyth Shailaja: 21 34 4 17 17 ((21 55 59 76 93)\93)
  • Superpyth Subminor Hexatonic: 17 4 17 17 21 17 ((17 21 38 55 76 93)\93)

See also