253edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
m Linking
ArrowHead294 (talk | contribs)
mNo edit summary
Line 12: Line 12:


== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{{comma basis begin}}
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal 8ve <br>Stretch (¢)
! colspan="2" | Tuning Error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
|-
| 2.3
| 2.3
| {{monzo| 401 -253 }}
| {{monzo| 401 -253 }}
| {{mapping| 253 401 }}
| {{mapping| 253 401 }}
| -0.007
| &minus;0.007
| 0.007
| 0.007
| 0.14
| 0.14
Line 63: Line 55:
| 0.295
| 0.295
| 6.22
| 6.22
|}
{{comma basis end}}


=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
{{rank-2 begin}}
|+Table of rank-2 temperaments by generator
! Periods<br>per 8ve
! Generator*
! Cents*
! Associated<br>Ratio*
! Temperaments
|-
|-
| 1
| 1
Line 97: Line 83:
| 7/5
| 7/5
| [[Cotritone]]
| [[Cotritone]]
|}
{{rank-2 end}}
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct
{{orf}}


== Scales ==
== Scales ==

Revision as of 04:49, 16 November 2024

← 252edo 253edo 254edo →
Prime factorization 11 × 23
Step size 4.74308 ¢ 
Fifth 148\253 (701.976 ¢)
(semiconvergent)
Semitones (A1:m2) 24:19 (113.8 ¢ : 90.12 ¢)
Consistency limit 17
Distinct consistency limit 17

Template:EDO intro

Theory

253edo is consistent to the 17-odd-limit, approximating the fifth by 148\253 (0.021284 cents sharper than the just 3/2), and the prime harmonics from 5 to 17 are all slightly flat. The equal temperament tempers out 32805/32768 in the 5-limit; 2401/2400 in the 7-limit; 385/384, 1375/1372 and 4000/3993 in the 11-limit; 325/324, 1575/1573 and 2200/2197 in the 13-limit; 375/374 and 595/594 in the 17-limit. It provides the optimal patent val for the tertiaschis temperament, and a good tuning for the sesquiquartififths temperament in the higher limits.

Prime harmonics

Approximation of prime harmonics in 253edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +0.02 -2.12 -1.24 -1.12 -1.00 -0.61 +1.30 -2.19 -0.33 -1.95
Relative (%) +0.0 +0.4 -44.8 -26.1 -23.6 -21.1 -12.8 +27.4 -46.1 -6.9 -41.2
Steps
(reduced)
253
(0)
401
(148)
587
(81)
710
(204)
875
(116)
936
(177)
1034
(22)
1075
(63)
1144
(132)
1229
(217)
1253
(241)

Subsets and supersets

253 = 11 × 23, and has subset edos 11edo and 23edo.

Regular temperament properties

Template:Comma basis begin |- | 2.3 | [401 -253 | [253 401]] | −0.007 | 0.007 | 0.14 |- | 2.3.5 | 32805/32768, [-4 -37 27 | [253 401 587]] | +0.300 | 0.435 | 9.16 |- | 2.3.5.7 | 2401/2400, 32805/32768, 390625/387072 | [253 401 587 710]] | +0.335 | 0.381 | 8.03 |- | 2.3.5.7.11 | 385/384, 1375/1372, 4000/3993, 19712/19683 | [253 401 587 710 875]] | +0.333 | 0.341 | 7.19 |- | 2.3.5.7.11.13 | 325/324, 385/384, 1375/1372, 1575/1573, 2200/2197 | [253 401 587 710 875 936]] | +0.323 | 0.312 | 6.58 |- | 2.3.5.7.11.13.17 | 325/324, 375/374, 385/384, 595/594, 1275/1274, 2200/2197 | [253 401 587 710 875 936 1034]] | +0.298 | 0.295 | 6.22 Template:Comma basis end

Rank-2 temperaments

Template:Rank-2 begin |- | 1 | 35\253 | 166.01 | 11/10 | Tertiaschis |- | 1 | 37\253 | 175.49 | 448/405 | Sesquiquartififths |- | 1 | 105\253 | 498.02 | 4/3 | Helmholtz |- | 1 | 123\253 | 583.40 | 7/5 | Cotritone Template:Rank-2 end Template:Orf

Scales