433edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Theory: put to the right subsection; -6701edo (addressed in the relevant edo page)
ArrowHead294 (talk | contribs)
mNo edit summary
Line 15: Line 15:
== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve Stretch (¢)
! rowspan="2" | Optimal<br />8ve Stretch (¢)
! colspan="2" | Tuning Error
! colspan="2" | Tuning Error
|-
|-
Line 69: Line 70:
=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
! Periods<br>per 8ve
|-
! Periods<br />per 8ve
! Generator*
! Generator*
! Cents*
! Cents*
! Associated<br>Ratio*
! Associated<br />Ratio*
! Temperaments
! Temperaments
|-
|-
Line 82: Line 84:
| [[Orson]]
| [[Orson]]
|}
|}
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct
{{orf}}


== Music ==
== Music ==

Revision as of 01:06, 16 November 2024

← 432edo 433edo 434edo →
Prime factorization 433 (prime)
Step size 2.77136 ¢ 
Fifth 253\433 (701.155 ¢)
Semitones (A1:m2) 39:34 (108.1 ¢ : 94.23 ¢)
Consistency limit 5
Distinct consistency limit 5

Template:EDO intro

Theory

443edo is only consistent to the 5-odd-limit since harmonic 7 is about halfway between its steps. To start with, the patent val 433 686 1005 1216] as well as the 433d val 433 686 1005 1215] are worth considering.

Using the patent val, the equal temperament tempers out 19683/19600 and 4096000/4084101 in the 7-limit; 3025/3024, 4000/3993, 6250/6237, 161280/161051, and 180224/180075 in the 11-limit.

Odd harmonics

Approximation of odd harmonics in 433edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -0.80 -1.09 +1.15 +1.17 +0.18 -0.80 +0.88 +0.36 -0.98 +0.35 +0.82
Relative (%) -28.9 -39.5 +41.5 +42.2 +6.6 -29.0 +31.6 +12.9 -35.3 +12.7 +29.8
Steps
(reduced)
686
(253)
1005
(139)
1216
(350)
1373
(74)
1498
(199)
1602
(303)
1692
(393)
1770
(38)
1839
(107)
1902
(170)
1959
(227)

Subsets and supersets

433edo is the 84th prime edo. It might be interesting due to being the smallest subset edo of the nanotemperament 2901533edo, an extremely high-precision/complexity microtemperament.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [-686 433 [433 686]] 0.2525 0.2525 9.11
2.3.5 2109375/2097152, [-29 52 -23 [433 686 1005]] 0.3254 0.2306 8.32
2.3.5.7 19683/19600, 4096000/4084101, 2109375/2097152 [433 686 1005 1216]] 0.1414 0.3759 13.56
2.3.5.7.11 3025/3024, 6250/6237, 30375/30184, 180224/180075 [433 686 1005 1216 1498]] 0.1026 0.3451 12.45
2.3.5.7.11.13 2080/2079, 625/624, 3025/3024, 18954/18865, 41472/41405 [433 686 1005 1216 1498 1602]] 0.1217 0.3179 11.47
2.3.5.7.11.13.17 2080/2079, 375/374, 715/714, 936/935, 1377/1372, 76032/75803 [433 686 1005 1216 1498 1602 1770]] 0.0919 0.3033 10.94

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
Ratio*
Temperaments
1 98\433 271.594 75/64 Orson

Template:Orf

Music

Francium