176edt: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
m Mark as stub
BudjarnLambeth (talk | contribs)
m Intro inter harm
Line 1: Line 1:
{{Stub}}
{{Infobox ET}}
{{Infobox ET}}
{{ED intro}}


== Intervals ==
{{Interval table}}


{{Stub}}
== Harmonics ==
{{Harmonics in equal
| steps = 176
| num = 3
| denom = 1
}}
{{Harmonics in equal
| steps = 176
| num = 3
| denom = 1
| start = 12
| collapsed = 1
}}

Revision as of 09:24, 5 October 2024

This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 175edt 176edt 177edt →
Prime factorization 24 × 11
Step size 10.8066 ¢ 
Octave 111\176edt (1199.53 ¢)
Consistency limit 22
Distinct consistency limit 16

176 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 176edt or 176ed3), is a nonoctave tuning system that divides the interval of 3/1 into 176 equal parts of about 10.8 ¢ each. Each step represents a frequency ratio of 31/176, or the 176th root of 3.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 10.81 7.39
2 21.61 14.77
3 32.42 22.16 52/51, 55/54, 56/55
4 43.23 29.55 40/39, 41/40
5 54.03 36.93 32/31, 33/32
6 64.84 44.32 27/26
7 75.65 51.7 47/45
8 86.45 59.09 41/39
9 97.26 66.48 55/52
10 108.07 73.86 33/31, 50/47
11 118.87 81.25 15/14
12 129.68 88.64 55/51
13 140.49 96.02 51/47
14 151.29 103.41 12/11
15 162.1 110.8 45/41, 56/51
16 172.91 118.18 21/19
17 183.71 125.57
18 194.52 132.95 47/42
19 205.32 140.34
20 216.13 147.73 17/15
21 226.94 155.11 49/43, 57/50
22 237.74 162.5 39/34
23 248.55 169.89 15/13
24 259.36 177.27 36/31
25 270.16 184.66
26 280.97 192.05 20/17
27 291.78 199.43 45/38
28 302.58 206.82 25/21, 56/47
29 313.39 214.2
30 324.2 221.59 41/34, 47/39
31 335 228.98 17/14, 57/47
32 345.81 236.36
33 356.62 243.75 43/35
34 367.42 251.14 47/38
35 378.23 258.52 51/41, 56/45
36 389.04 265.91
37 399.84 273.3 34/27, 63/50
38 410.65 280.68 52/41
39 421.46 288.07 37/29, 51/40
40 432.26 295.45
41 443.07 302.84 31/24
42 453.88 310.23 13/10
43 464.68 317.61 17/13
44 475.49 325 25/19
45 486.3 332.39 45/34
46 497.1 339.77 4/3
47 507.91 347.16 55/41, 63/47
48 518.72 354.55 27/20
49 529.52 361.93 19/14
50 540.33 369.32 41/30, 56/41
51 551.13 376.7 11/8
52 561.94 384.09
53 572.75 391.48 32/23, 39/28
54 583.55 398.86 7/5
55 594.36 406.25 31/22, 55/39
56 605.17 413.64 44/31
57 615.97 421.02
58 626.78 428.41 56/39
59 637.59 435.8 13/9
60 648.39 443.18 16/11
61 659.2 450.57 41/28, 60/41
62 670.01 457.95
63 680.81 465.34 40/27
64 691.62 472.73
65 702.43 480.11 3/2
66 713.23 487.5
67 724.04 494.89 38/25, 41/27
68 734.85 502.27 26/17, 55/36
69 745.65 509.66 20/13
70 756.46 517.05 48/31
71 767.27 524.43
72 778.07 531.82 47/30, 58/37
73 788.88 539.2 41/26
74 799.69 546.59 27/17, 46/29
75 810.49 553.98
76 821.3 561.36 45/28
77 832.11 568.75 55/34
78 842.91 576.14
79 853.72 583.52 18/11
80 864.53 590.91 28/17
81 875.33 598.3 63/38
82 886.14 605.68
83 896.94 613.07 42/25, 47/28
84 907.75 620.45
85 918.56 627.84 17/10
86 929.36 635.23
87 940.17 642.61 31/18, 43/25
88 950.98 650 26/15, 45/26
89 961.78 657.39 54/31
90 972.59 664.77
91 983.4 672.16 30/17
92 994.2 679.55
93 1005.01 686.93 25/14
94 1015.82 694.32
95 1026.62 701.7 38/21
96 1037.43 709.09 51/28
97 1048.24 716.48 11/6
98 1059.04 723.86
99 1069.85 731.25
100 1080.66 738.64 28/15
101 1091.46 746.02 62/33
102 1102.27 753.41 17/9
103 1113.08 760.8
104 1123.88 768.18 44/23
105 1134.69 775.57 52/27
106 1145.5 782.95 31/16, 64/33
107 1156.3 790.34 39/20
108 1167.11 797.73 51/26
109 1177.92 805.11
110 1188.72 812.5
111 1199.53 819.89 2/1
112 1210.34 827.27
113 1221.14 834.66
114 1231.95 842.05 55/27
115 1242.75 849.43 41/20
116 1253.56 856.82 33/16
117 1264.37 864.2 27/13
118 1275.17 871.59
119 1285.98 878.98
120 1296.79 886.36 55/26
121 1307.59 893.75
122 1318.4 901.14 15/7
123 1329.21 908.52 28/13
124 1340.01 915.91
125 1350.82 923.3 24/11
126 1361.63 930.68
127 1372.43 938.07 42/19
128 1383.24 945.45 20/9
129 1394.05 952.84 47/21
130 1404.85 960.23 9/4
131 1415.66 967.61 34/15
132 1426.47 975 57/25
133 1437.27 982.39 39/17
134 1448.08 989.77 30/13
135 1458.89 997.16
136 1469.69 1004.55
137 1480.5 1011.93 40/17
138 1491.31 1019.32
139 1502.11 1026.7 50/21
140 1512.92 1034.09
141 1523.73 1041.48 41/17
142 1534.53 1048.86
143 1545.34 1056.25
144 1556.15 1063.64
145 1566.95 1071.02 42/17, 47/19
146 1577.76 1078.41
147 1588.56 1085.8
148 1599.37 1093.18 63/25
149 1610.18 1100.57 38/15
150 1620.98 1107.95 51/20
151 1631.79 1115.34
152 1642.6 1122.73 31/12
153 1653.4 1130.11 13/5
154 1664.21 1137.5 34/13
155 1675.02 1144.89 50/19
156 1685.82 1152.27 45/17
157 1696.63 1159.66
158 1707.44 1167.05
159 1718.24 1174.43
160 1729.05 1181.82 19/7
161 1739.86 1189.2 41/15
162 1750.66 1196.59 11/4
163 1761.47 1203.98 47/17
164 1772.28 1211.36 64/23
165 1783.08 1218.75 14/5
166 1793.89 1226.14 31/11
167 1804.7 1233.52
168 1815.5 1240.91
169 1826.31 1248.3
170 1837.12 1255.68 26/9
171 1847.92 1263.07 32/11
172 1858.73 1270.45
173 1869.54 1277.84
174 1880.34 1285.23
175 1891.15 1292.61
176 1901.96 1300 3/1

Harmonics

Approximation of harmonics in 176edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -0.47 +0.00 -0.94 +1.78 -0.47 +2.82 -1.41 +0.00 +1.31 -1.60 -0.94
Relative (%) -4.4 +0.0 -8.7 +16.5 -4.4 +26.1 -13.1 +0.0 +12.1 -14.8 -8.7
Steps
(reduced)
111
(111)
176
(0)
222
(46)
258
(82)
287
(111)
312
(136)
333
(157)
352
(0)
369
(17)
384
(32)
398
(46)
Approximation of harmonics in 176edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +0.97 +2.35 +1.78 -1.89 +1.22 -0.47 +3.18 +0.84 +2.82 -2.07 -3.38
Relative (%) +9.0 +21.7 +16.5 -17.5 +11.3 -4.4 +29.5 +7.7 +26.1 -19.2 -31.3
Steps
(reduced)
411
(59)
423
(71)
434
(82)
444
(92)
454
(102)
463
(111)
472
(120)
480
(128)
488
(136)
495
(143)
502
(150)