177edt
Jump to navigation
Jump to search
Prime factorization
3 × 59
Step size
10.7455¢
Octave
112\177edt (1203.5¢)
Consistency limit
2
Distinct consistency limit
2
← 176edt | 177edt | 178edt → |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.50 | +0.00 | -3.75 | -3.23 | +3.50 | +5.26 | -0.25 | +0.00 | +0.27 | -3.55 | -3.75 |
Relative (%) | +32.5 | +0.0 | -34.9 | -30.0 | +32.5 | +49.0 | -2.4 | +0.0 | +2.5 | -33.1 | -34.9 | |
Steps (reduced) |
112 (112) |
177 (0) |
223 (46) |
259 (82) |
289 (112) |
314 (137) |
335 (158) |
354 (0) |
371 (17) |
386 (32) |
400 (46) |
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 10.746 | |
2 | 21.491 | 78/77 |
3 | 32.237 | |
4 | 42.982 | |
5 | 53.728 | |
6 | 64.473 | 27/26 |
7 | 75.219 | |
8 | 85.964 | 21/20, 81/77 |
9 | 96.71 | |
10 | 107.455 | |
11 | 118.201 | |
12 | 128.946 | |
13 | 139.692 | |
14 | 150.437 | |
15 | 161.183 | |
16 | 171.928 | |
17 | 182.674 | 10/9 |
18 | 193.419 | |
19 | 204.165 | |
20 | 214.91 | |
21 | 225.656 | |
22 | 236.401 | |
23 | 247.147 | 15/13 |
24 | 257.892 | |
25 | 268.638 | 7/6 |
26 | 279.383 | |
27 | 290.129 | 13/11 |
28 | 300.874 | |
29 | 311.62 | |
30 | 322.365 | |
31 | 333.111 | 63/52 |
32 | 343.856 | |
33 | 354.602 | 27/22 |
34 | 365.347 | |
35 | 376.093 | |
36 | 386.838 | |
37 | 397.584 | 44/35 |
38 | 408.329 | |
39 | 419.075 | |
40 | 429.82 | 50/39, 77/60 |
41 | 440.566 | |
42 | 451.311 | 35/27 |
43 | 462.057 | |
44 | 472.802 | |
45 | 483.548 | |
46 | 494.293 | |
47 | 505.039 | |
48 | 515.784 | 35/26 |
49 | 526.53 | |
50 | 537.275 | 15/11 |
51 | 548.021 | |
52 | 558.766 | |
53 | 569.512 | |
54 | 580.257 | |
55 | 591.003 | |
56 | 601.748 | |
57 | 612.494 | 77/54 |
58 | 623.239 | 63/44 |
59 | 633.985 | 13/9 |
60 | 644.731 | |
61 | 655.476 | |
62 | 666.222 | 72/49 |
63 | 676.967 | 77/52 |
64 | 687.713 | 52/35 |
65 | 698.458 | |
66 | 709.204 | |
67 | 719.949 | 50/33 |
68 | 730.695 | |
69 | 741.44 | |
70 | 752.186 | 54/35 |
71 | 762.931 | |
72 | 773.677 | |
73 | 784.422 | 63/40 |
74 | 795.168 | |
75 | 805.913 | 35/22 |
76 | 816.659 | |
77 | 827.404 | |
78 | 838.15 | |
79 | 848.895 | 80/49 |
80 | 859.641 | |
81 | 870.386 | |
82 | 881.132 | |
83 | 891.877 | |
84 | 902.623 | |
85 | 913.368 | 22/13 |
86 | 924.114 | |
87 | 934.859 | 12/7 |
88 | 945.605 | |
89 | 956.35 | |
90 | 967.096 | 7/4 |
91 | 977.841 | |
92 | 988.587 | 39/22 |
93 | 999.332 | |
94 | 1010.078 | |
95 | 1020.823 | |
96 | 1031.569 | |
97 | 1042.314 | |
98 | 1053.06 | |
99 | 1063.805 | |
100 | 1074.551 | |
101 | 1085.296 | |
102 | 1096.042 | 66/35 |
103 | 1106.787 | |
104 | 1117.533 | 40/21 |
105 | 1128.278 | |
106 | 1139.024 | |
107 | 1149.769 | 35/18 |
108 | 1160.515 | |
109 | 1171.26 | 65/33 |
110 | 1182.006 | |
111 | 1192.751 | |
112 | 1203.497 | |
113 | 1214.242 | |
114 | 1224.988 | |
115 | 1235.733 | 49/24 |
116 | 1246.479 | |
117 | 1257.224 | |
118 | 1267.97 | 27/13 |
119 | 1278.716 | 44/21 |
120 | 1289.461 | |
121 | 1300.207 | |
122 | 1310.952 | |
123 | 1321.698 | |
124 | 1332.443 | |
125 | 1343.189 | |
126 | 1353.934 | |
127 | 1364.68 | 11/5 |
128 | 1375.425 | |
129 | 1386.171 | 78/35 |
130 | 1396.916 | |
131 | 1407.662 | |
132 | 1418.407 | |
133 | 1429.153 | |
134 | 1439.898 | |
135 | 1450.644 | 81/35 |
136 | 1461.389 | |
137 | 1472.135 | |
138 | 1482.88 | |
139 | 1493.626 | |
140 | 1504.371 | |
141 | 1515.117 | |
142 | 1525.862 | |
143 | 1536.608 | |
144 | 1547.353 | 22/9 |
145 | 1558.099 | |
146 | 1568.844 | 52/21 |
147 | 1579.59 | |
148 | 1590.335 | |
149 | 1601.081 | |
150 | 1611.826 | 33/13 |
151 | 1622.572 | |
152 | 1633.317 | 18/7, 77/30 |
153 | 1644.063 | |
154 | 1654.808 | 13/5 |
155 | 1665.554 | |
156 | 1676.299 | |
157 | 1687.045 | |
158 | 1697.79 | |
159 | 1708.536 | |
160 | 1719.281 | 27/10 |
161 | 1730.027 | |
162 | 1740.772 | |
163 | 1751.518 | |
164 | 1762.263 | |
165 | 1773.009 | |
166 | 1783.754 | |
167 | 1794.5 | |
168 | 1805.245 | |
169 | 1815.991 | 20/7, 77/27 |
170 | 1826.736 | |
171 | 1837.482 | 26/9 |
172 | 1848.227 | |
173 | 1858.973 | |
174 | 1869.718 | |
175 | 1880.464 | 77/26 |
176 | 1891.209 | |
177 | 1901.955 | 3/1 |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |