4L 4s: Difference between revisions
No edit summary |
m Modes |
||
Line 13: | Line 13: | ||
There are 4 different near-MOSes such that multiples of the period are the only generic intervals with more than two specific representatives: LLsLsLss, LLsLssLs, LLssLLss, LLssLsLs. However, none are strictly proper in 12edo. (They are only proper if the generator is larger than 100 cents, which unfortunately is the wrong direction for good diminished tunings.) | There are 4 different near-MOSes such that multiples of the period are the only generic intervals with more than two specific representatives: LLsLsLss, LLsLssLs, LLssLLss, LLssLsLs. However, none are strictly proper in 12edo. (They are only proper if the generator is larger than 100 cents, which unfortunately is the wrong direction for good diminished tunings.) | ||
== Modes == | |||
{{MOS modes}} | |||
== Scale tree == | == Scale tree == |
Revision as of 10:00, 12 February 2024
↖ 3L 3s | ↑ 4L 3s | 5L 3s ↗ |
← 3L 4s | 4L 4s | 5L 4s → |
↙ 3L 5s | ↓ 4L 5s | 5L 5s ↘ |
┌╥┬╥┬╥┬╥┬┐ │║│║│║│║││ ││││││││││ └┴┴┴┴┴┴┴┴┘
sLsLsLsL
4L 4s, named tetrawood in TAMNAMS, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 4 large steps and 4 small steps, with a period of 1 large step and 1 small step that repeats every 300.0 ¢, or 4 times every octave. Generators that produce this scale range from 150 ¢ to 300 ¢, or from 0 ¢ to 150 ¢. Scales of the true MOS form, where every period is the same, are proper because there is only one small step per period. The minimum harmonic entropy scale with this MOS pattern is diminished[8], basically the familiar octatonic scale of 12edo.
There are 4 different near-MOSes such that multiples of the period are the only generic intervals with more than two specific representatives: LLsLsLss, LLsLssLs, LLssLLss, LLssLsLs. However, none are strictly proper in 12edo. (They are only proper if the generator is larger than 100 cents, which unfortunately is the wrong direction for good diminished tunings.)
Modes
UDP | Cyclic order |
Step pattern |
---|---|---|
4|0(4) | 1 | LsLsLsLs |
0|4(4) | 2 | sLsLsLsL |
Scale tree
Generator | Cents | L | s | L/s | Comments | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Chroma-positive | Chroma-negative | ||||||||||
1\8 | 150.000 | 150.000 | 1 | 1 | 1.000 | ||||||
6\44 | 163.636 | 136.364 | 6 | 5 | 1.200 | Fourfives↑ | |||||
5\36 | 166.667 | 133.333 | 5 | 4 | 1.250 | ||||||
9\64 | 168.750 | 105.000 | 9 | 7 | 1.286 | ||||||
4\28 | 171.429 | 128.571 | 4 | 3 | 1.333 | ||||||
11\76 | 173.684 | 126.316 | 11 | 8 | 1.375 | ||||||
7\48 | 175.000 | 125.000 | 7 | 5 | 1.400 | ||||||
10\68 | 176.471 | 123.529 | 10 | 7 | 1.428 | ||||||
3\20 | 180.000 | 60.000 | 3 | 2 | 1.500 | L/s = 3/2 | |||||
11\72 | 183.333 | 116.667 | 11 | 7 | 1.571 | ||||||
8\52 | 184.615 | 115.385 | 8 | 5 | 1.600 | ||||||
13\84 | 185.714 | 114.286 | 13 | 8 | 1.625 | Golden diminished | |||||
5\32 | 187.500 | 112.500 | 5 | 3 | 1.667 | ||||||
12\76 | 189.474 | 110.526 | 12 | 7 | 1.714 | ||||||
7\44 | 190.909 | 109.091 | 7 | 4 | 1.750 | ||||||
9\56 | 192.857 | 107.143 | 9 | 5 | 1.800 | ||||||
2\12 | 200.000 | 100.000 | 2 | 1 | 2.000 | Basic tetrawood Diminished is optimal around here | |||||
9\52 | 207.692 | 92.308 | 9 | 4 | 2.250 | ||||||
7\40 | 210.000 | 90.000 | 7 | 3 | 2.333 | ||||||
12\68 | 211.765 | 88.235 | 12 | 5 | 2.400 | ||||||
5\28 | 214.286 | 85.714 | 5 | 2 | 2.500 | ||||||
13\72 | 216.667 | 83.333 | 13 | 5 | 2.600 | Unnamed golden tuning | |||||
8\44 | 218.182 | 81.818 | 8 | 3 | 2.667 | ||||||
11\60 | 220.000 | 80.000 | 11 | 4 | 2.750 | ||||||
3\16 | 225.000 | 75.000 | 3 | 1 | 3.000 | L/s = 3/1 | |||||
10\52 | 230.769 | 69.231 | 10 | 3 | 3.333 | ||||||
7\36 | 233.333 | 66.667 | 7 | 2 | 3.500 | ||||||
11\56 | 235.714 | 64.286 | 11 | 3 | 3.667 | ||||||
4\20 | 240.000 | 60.000 | 4 | 1 | 4.000 | ||||||
9\44 | 245.455 | 54.545 | 9 | 2 | 4.500 | ||||||
5\24 | 250.000 | 50.000 | 5 | 1 | 5.000 | ||||||
6\28 | 257.143 | 42.857 | 6 | 1 | 6.000 | Quadritikleismic↓ | |||||
1\4 | 300.000 | 0.000 | 1 | 0 | → inf |