298edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Eliora (talk | contribs)
Eliora (talk | contribs)
Rework
Line 3: Line 3:


== Theory ==
== Theory ==
298edo has excellent representation of the 2.5.11.17.23.43.53.59 subgroup, with all the harmonics having errors of less than 10 r¢. It is a double of [[149edo]], the smallest uniquely consistent EDO in the 17-limit. In the 2.5.11.17.23.43.53.59 subgroup, 298edo tempers out 3176/3175, 3128/3125, 3128/3127, 32906/32065 and 76585/76582.
298edo is [[consistent]] in the 5-odd-limit, where it is [[enfactoring|enfactored]], with the same tuning as [[149edo]]. Since 149edo is notable for being the smallest edo distinctly consistent in the [[17-odd-limit]], 298edo is related to 149edo - it retains the mapping for 2.3.5.17 but differs on the mapping for harmonics [[7/4|7]], [[11/8|11]], [[13/8|13]]. 298edo tempers out the [[rastma]], splitting [[3/2]] inherited from 149edo into two steps representing [[11/9]]. It also tempers out the [[ratwolfsma]].


=== Patent val ===
The patent val supports the [[bison]] temperament and the rank-3 temperament [[hemimage]]. In the 2.5.11.13 subgroup, 298edo supports [[emka]]. In the full 13-limit, 298edo supports an unnamed 77 & 298 temperament with [[13/8]] as its generator.   
298edo's patent val is the lowest error val in the 17-limit among 298edo vals, but they differ on the mapping of the 7th, 11th, and 13th harmonics. Thus it can be viewed as a "spicy 149edo" as a result.   


The patent val in 298edo supports the [[bison]] temperament and the rank-3 temperament [[hemimage]]. In the 2.5.11.13 subgroup, 298edo supports [[emka]]. In the full 13-limit, 298edo supports an unnamed 77 & 298 temperament with [[13/8]] as its generator.
Aside from the patent val, there is a number of mappings to be considered. One can approach 298edo's vals as a double of 149edo again, by simply viewing its prime harmonics as variations from 149edo by its own half-step.


298edo tempers out the [[rastma]] and the [[ratwolfsma]], meaning it splits its perfect fifth which it inherits from 149edo, into two steps representing 11/9, and also supports the [[ratwolf triad]].
The 298d val, {{val|298 472 692 '''836''' 1031}}, which includes 149edo's 7-limit tuning, is better tuned than the patent val in the 11-limit (though not in the 17-limit). It supports [[hagrid]], in addition to the 31 & 298d variant and the 118 & 298d variant of [[hemithirds]]. Some of the commas it tempers out make for much more interesting temperaments than the patent val - for example it still tempers out 243/242, but now it adds [[1029/1024]], [[3136/3125]], and [[9801/9800]].  


=== Other vals ===
The 298cd val, {{val|298 472 '''691''' '''836''' 1031}} supports [[miracle]].  
Different temperaments can be extracted from 298edo by simply viewing its prime harmonics as variations from 149edo by its own half-step, although it is important to note that these vals are not better tuned than the patent val. 
 
The 298d val in 11-limit (149edo with 298edo 11/8) is better tuned than the patent val (although not in the 17-limit) and supports [[hagrid]], in addition to the 31 & 298d variant and the 118 & 298d variant of [[hemithirds]]. Some of the commas it tempers out make for much more interesting temperaments than the patent val. It still tempers out 243/242, but now it adds 1029/1024, 3136/3125, and 9801/9800.
 
The 298cd val supports [[miracle]].  


In higher limits, 298edo has excellent representation of the 2.5.11.17.23.43.53.59 subgroup, with all the harmonics having errors of less than 10 r¢. A comma basis for the 2.5.11.17.23.43.53.59 subgroup is {1376/1375, 3128/3127, 4301/4300, 25075/25069, 38743/38720, 58351/58300, 973360/972961}.
=== Prime harmonics ===
=== Prime harmonics ===
{{Harmonics in equal|298}}
{{Harmonics in equal|298}}

Revision as of 14:54, 3 February 2024

← 297edo 298edo 299edo →
Prime factorization 2 × 149
Step size 4.02685 ¢ 
Fifth 174\298 (700.671 ¢) (→ 87\149)
Semitones (A1:m2) 26:24 (104.7 ¢ : 96.64 ¢)
Consistency limit 5
Distinct consistency limit 5

Template:EDO intro

Theory

298edo is consistent in the 5-odd-limit, where it is enfactored, with the same tuning as 149edo. Since 149edo is notable for being the smallest edo distinctly consistent in the 17-odd-limit, 298edo is related to 149edo - it retains the mapping for 2.3.5.17 but differs on the mapping for harmonics 7, 11, 13. 298edo tempers out the rastma, splitting 3/2 inherited from 149edo into two steps representing 11/9. It also tempers out the ratwolfsma.

The patent val supports the bison temperament and the rank-3 temperament hemimage. In the 2.5.11.13 subgroup, 298edo supports emka. In the full 13-limit, 298edo supports an unnamed 77 & 298 temperament with 13/8 as its generator.

Aside from the patent val, there is a number of mappings to be considered. One can approach 298edo's vals as a double of 149edo again, by simply viewing its prime harmonics as variations from 149edo by its own half-step.

The 298d val, 298 472 692 836 1031], which includes 149edo's 7-limit tuning, is better tuned than the patent val in the 11-limit (though not in the 17-limit). It supports hagrid, in addition to the 31 & 298d variant and the 118 & 298d variant of hemithirds. Some of the commas it tempers out make for much more interesting temperaments than the patent val - for example it still tempers out 243/242, but now it adds 1029/1024, 3136/3125, and 9801/9800.

The 298cd val, 298 472 691 836 1031] supports miracle.

In higher limits, 298edo has excellent representation of the 2.5.11.17.23.43.53.59 subgroup, with all the harmonics having errors of less than 10 r¢. A comma basis for the 2.5.11.17.23.43.53.59 subgroup is {1376/1375, 3128/3127, 4301/4300, 25075/25069, 38743/38720, 58351/58300, 973360/972961}.

Prime harmonics

Approximation of odd harmonics in 298edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -1.28 +0.26 +1.64 +1.46 +0.36 +1.08 -1.02 -0.26 +0.47 +0.36 -0.09
Relative (%) -31.9 +6.5 +40.8 +36.2 +8.9 +26.9 -25.3 -6.4 +11.8 +8.9 -2.1
Steps
(reduced)
472
(174)
692
(96)
837
(241)
945
(51)
1031
(137)
1103
(209)
1164
(270)
1218
(26)
1266
(74)
1309
(117)
1348
(156)

Regular temperament properties

Subgroup Comma list Mapping Optimal

8ve stretch (¢)

Tuning error
Absolute (¢) Relative (%)
2.3.5.7 6144/6125, 321489/320000, 3796875/3764768 [298 472 692 837]] 0.0275 0.5022 ?
2.3.5.7.11 243/242, 1375/1372, 6144/6125, 72171/71680 [298 472 692 837 1031]] 0.0012 0.4523 ?
2.3.5.7.11 243/242, 1029/1024, 3136/3125, 9801/9800 [298 472 692 836 1031]] (298d) 0.2882 0.4439 ?
2.3.5.7.11.13 243/242, 351/350, 1375/1372, 4096/4095, 16038/15925 [298 472 692 837 1031 1103]] ?
2.3.5.7.11.13.17 243/242, 351/350, 561/560, 1375/1372, 14175/14144, 16038/15925 [298 472 692 837 1031 1103 1218]] ?

Rank-2 temperaments

Note: 5-limit temperaments represented by 149edo are not included.

Periods
per Octave
Generator
(Reduced)
Cents
(Reduced)
Associated
Ratio
Temperaments
1 113\298 455.033 13/10 Petrtri (2.11/5.13/5)
1 137\298 551.67 11/8 Emka
2 39\298 157.04 35/32 Bison

Scales

The concoctic scale for 298edo is a scale produced by a generator of 105 steps (paraconcoctic), and the associated rank-2 temperament is 105 & 298.