317edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Francium (talk | contribs)
+music
Francium (talk | contribs)
misc.
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
{{EDO intro|317}}
{{EDO intro|317}}
== Theory ==
== Theory ==
317et tempers out 589824/588245, [[16875/16807]], [[65625/65536]] and 49009212/48828125 in the 7-limit; 1835008/1830125, 14700/14641, 2097152/2096325, [[4000/3993]], 2734375/2725888, 1953125/1951488, 172032/171875, [[441/440]], 5767168/5764801, 825000/823543, 537109375/536870912, 134775333/134217728, 160083/160000, 16808715/16777216, 539055/537824 and 3294225/3294172 in the 11-limit.
317et is only consistent to the [[5-odd-limit]] and the [[harmonic]] 3 is about halfway its steps. Using the patent val, it tempers out 589824/588245, [[16875/16807]], [[65625/65536]] and 49009212/48828125 in the 7-limit; 1835008/1830125, 14700/14641, 2097152/2096325, [[4000/3993]], 2734375/2725888, 1953125/1951488, 172032/171875, [[441/440]], 5767168/5764801, 825000/823543, 537109375/536870912, 134775333/134217728, 160083/160000, 16808715/16777216, 539055/537824 and 3294225/3294172 in the 11-limit.
 
===Odd harmonics===
===Odd harmonics===
{{Harmonics in equal|317}}
{{Harmonics in equal|317}}
===Subsets and supersets===
===Subsets and supersets===
317edo is the 66th [[prime edo]]. [[634edo]], which doubles it, gives a good correction to the harmonic 3.
317edo is the 66th [[prime edo]]. [[634edo]], which doubles it, gives a good correction to the harmonic 3.
==Regular temperament properties==
==Regular temperament properties==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"

Revision as of 10:08, 31 December 2023

← 316edo 317edo 318edo →
Prime factorization 317 (prime)
Step size 3.78549 ¢ 
Fifth 185\317 (700.315 ¢)
Semitones (A1:m2) 27:26 (102.2 ¢ : 98.42 ¢)
Dual sharp fifth 186\317 (704.101 ¢)
Dual flat fifth 185\317 (700.315 ¢)
Dual major 2nd 54\317 (204.416 ¢)
Consistency limit 5
Distinct consistency limit 5

Template:EDO intro

Theory

317et is only consistent to the 5-odd-limit and the harmonic 3 is about halfway its steps. Using the patent val, it tempers out 589824/588245, 16875/16807, 65625/65536 and 49009212/48828125 in the 7-limit; 1835008/1830125, 14700/14641, 2097152/2096325, 4000/3993, 2734375/2725888, 1953125/1951488, 172032/171875, 441/440, 5767168/5764801, 825000/823543, 537109375/536870912, 134775333/134217728, 160083/160000, 16808715/16777216, 539055/537824 and 3294225/3294172 in the 11-limit.

Odd harmonics

Approximation of odd harmonics in 317edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -1.64 -0.19 +0.26 +0.51 +1.36 -0.15 -1.83 +1.04 +1.54 -1.38 +0.12
Relative (%) -43.3 -5.1 +6.8 +13.4 +36.0 -3.9 -48.4 +27.4 +40.7 -36.5 +3.1
Steps
(reduced)
502
(185)
736
(102)
890
(256)
1005
(54)
1097
(146)
1173
(222)
1238
(287)
1296
(28)
1347
(79)
1392
(124)
1434
(166)

Subsets and supersets

317edo is the 66th prime edo. 634edo, which doubles it, gives a good correction to the harmonic 3.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.9 [1005 -317 [317 1005]] -0.0799 0.0799 2.11
2.9.5 [-53 5 16, [33 -17 9 [317 1005 736]] -0.0254 0.1009 2.67
2.9.5.7 420175/419904, 703125/702464, 33554432/33480783 [317 1005 736 890]] -0.0422 0.0921 2.43
2.9.5.7.11 6250/6237, 12005/11979, 46656/46585, 151263/151250 [317 1005 736 890 1097]] -0.1126 0.1631 4.31
2.9.5.7.11.13 1575/1573, 4459/4455, 6250/6237, 67392/67375, 190125/189728 [317 1005 736 890 1097 1173]] -0.0871 0.1594 4.21
2.9.5.7.11.13.17 936/935, 1225/1224, 1575/1573, 12376/12375, 17920/17901, 34000/33957 [317 1005 736 890 1097 1173 1296]] -0.1109 0.1587 4.19

Music

Francium