403edo: Difference between revisions
mNo edit summary |
Rework |
||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{EDO intro|403}} | {{EDO intro|403}} | ||
== Theory == | == Theory == | ||
403edo is only [[consistent]] to the [[5-odd-limit]], since the error of [[harmonic]] [[7/1|7]] is quite large. To start with, the 403def [[val]] {{val| 403 639 936 '''1132''' '''1395''' '''1492''' }}, the 403df [[val]] {{val| 403 639 936 '''1132''' '''1394''' '''1492''' }}, and the [[patent val]] {{val| 403 639 936 '''1131''' '''1394''' '''1491''' }} are worth considering. | |||
The equal temperament [[tempering out|tempers out]] 1600000/1594323 ([[amity comma]]) and {{monzo| 70 0 -31 }} (31-5, or birds comma) in the 5-limit. | |||
Using the 403d val, it tempers out [[4375/4374]], [[5120/5103]], and [[6144/6125]] in the 7-limit, so that it [[support]]s [[amity|septimal amity]], the 152 & 251 temperament. Extending it by the 403def val, it tempers out [[540/539]], [[5632/5625]], [[6250/6237]], and [[19712/19683]] in the 11-limit, supporting 11-limit amity; and [[1575/1573]], [[1716/1715]], [[2200/2197]], 3584/3575 in the 13-limit. Extending it by the alternative 403df val, 1375/1372, [[14641/14580]] in the 11-limit; [[352/351]], [[847/845]], and [[2080/2079]] in the 13-limit. | |||
Using the patent val, it tempers out [[3136/3125]], [[2100875/2097152]], and [[78125000/78121827]] in the 7-limit; [[3025/3024]], [[3388/3375]], 12005/11979, 14641/14580, 42875/42768, and [[131072/130977]] in the 11-limit; [[2080/2079]], [[4096/4095]], [[4225/4224]], [[6656/6655]], and [[10648/10647]] in the 13-limit. | |||
=== Odd harmonics === | |||
{{Harmonics in equal|403}} | {{Harmonics in equal|403}} | ||
==Regular temperament properties== | |||
=== Subsets and supersets === | |||
Since 403 factors into {{factorization|403}}, 403edo contains [[13edo]] and [[31edo]] as subsets. | |||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
! rowspan="2" |[[Subgroup]] | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" |[[Comma list|Comma List]] | ! rowspan="2" | [[Comma list|Comma List]] | ||
! rowspan="2" |[[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" |Optimal<br>8ve Stretch (¢) | ! rowspan="2" | Optimal<br>8ve Stretch (¢) | ||
! colspan="2" |Tuning Error | ! colspan="2" | Tuning Error | ||
|- | |- | ||
![[TE error|Absolute]] (¢) | ! [[TE error|Absolute]] (¢) | ||
![[TE simple badness|Relative]] (%) | ! [[TE simple badness|Relative]] (%) | ||
|- | |- | ||
|2.3 | | 2.3 | ||
|{{monzo|639 -403}} | | {{monzo| 639 -403 }} | ||
|{{ | | {{mapping| 403 639 }} | ||
| -0.2443 | | -0.2443 | ||
| 0.2443 | | 0.2443 | ||
| 8.20 | | 8.20 | ||
|- | |- | ||
|2.3.5 | | 2.3.5 | ||
| | | 1600000/1594323, {{monzo| 81 -13 -26 }} | ||
|{{ | | {{mapping| 403 639 936 }} | ||
| -0.2753 | | -0.2753 | ||
| 0.2042 | | 0.2042 | ||
| 6.86 | | 6.86 | ||
|- | |- | ||
|2.3.5.7 | | 2.3.5.7 | ||
|3136/3125, 1600000/1594323, 2100875/2097152 | | 3136/3125, 1600000/1594323, 2100875/2097152 | ||
|{{ | | {{mapping| 403 639 936 1131 }} (403) | ||
| -0.3751 | | -0.3751 | ||
| 0.2473 | | 0.2473 | ||
| 8.31 | | 8.31 | ||
|- | |- | ||
|2.3.5.7.11 | | 2.3.5.7.11 | ||
|3025/3024, | | 3025/3024, 3136/3125, 12005/11979, 131072/130977 | ||
|{{ | | {{mapping| 403 639 936 1131 1394 }} (403) | ||
| -0.0621 | | -0.0621 | ||
| 0.3160 | | 0.3160 | ||
| 10.61 | | 10.61 | ||
|- | |- | ||
|2.3.5.7.11.13 | | 2.3.5.7.11.13 | ||
|2080/2079, 3025/3024, | | 2080/2079, 3025/3024, 3136/3125, 4096/4095, 12005/11979 | ||
|{{ | | {{mapping| 403 639 936 1131 1394 1491 }} (403) | ||
| -0.0146 | | -0.0146 | ||
| 0.3074 | | 0.3074 | ||
| 10.32 | | 10.32 | ||
|- | |- | ||
|2.3.5.7.11.13.17 | | 2.3.5.7.11.13.17 | ||
| | | 595/594, 833/832, 1225/1224, 3025/3024, 3136/3125, 4096/4095 | ||
|{{ | | {{mapping| 403 639 936 1131 1394 1491 1647 }} (403) | ||
| +0.0133 | | +0.0133 | ||
| 0.2927 | | 0.2927 | ||
Line 62: | Line 75: | ||
|+Table of rank-2 temperaments by generator | |+Table of rank-2 temperaments by generator | ||
! Periods<br>per 8ve | ! Periods<br>per 8ve | ||
! Generator | ! Generator* | ||
! Cents | ! Cents* | ||
! Associated<br> | ! Associated<br>Ratio* | ||
! Temperaments | ! Temperaments | ||
|- | |- | ||
|1 | | 1 | ||
|53\403 | | 53\403 | ||
|157.82 | | 157.82 | ||
|36756909/33554432 | | 36756909/33554432 | ||
|[[Hemiegads]] | | [[Hemiegads]] | ||
|- | |- | ||
|1 | | 1 | ||
|106\403 | | 106\403 | ||
|315.63 | | 315.63 | ||
|6/5 | | 6/5 | ||
|[[Egads]] | | [[Egads]] | ||
|- | |- | ||
|1 | | 1 | ||
|114\403 | | 114\403 | ||
|339.45 | | 339.45 | ||
|243/200 | | 243/200 | ||
|[[Amity]] | | [[Amity]] (403defff) | ||
|} | |} | ||
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct |
Revision as of 15:51, 6 November 2023
← 402edo | 403edo | 404edo → |
Theory
403edo is only consistent to the 5-odd-limit, since the error of harmonic 7 is quite large. To start with, the 403def val ⟨403 639 936 1132 1395 1492], the 403df val ⟨403 639 936 1132 1394 1492], and the patent val ⟨403 639 936 1131 1394 1491] are worth considering.
The equal temperament tempers out 1600000/1594323 (amity comma) and [70 0 -31⟩ (31-5, or birds comma) in the 5-limit.
Using the 403d val, it tempers out 4375/4374, 5120/5103, and 6144/6125 in the 7-limit, so that it supports septimal amity, the 152 & 251 temperament. Extending it by the 403def val, it tempers out 540/539, 5632/5625, 6250/6237, and 19712/19683 in the 11-limit, supporting 11-limit amity; and 1575/1573, 1716/1715, 2200/2197, 3584/3575 in the 13-limit. Extending it by the alternative 403df val, 1375/1372, 14641/14580 in the 11-limit; 352/351, 847/845, and 2080/2079 in the 13-limit.
Using the patent val, it tempers out 3136/3125, 2100875/2097152, and 78125000/78121827 in the 7-limit; 3025/3024, 3388/3375, 12005/11979, 14641/14580, 42875/42768, and 131072/130977 in the 11-limit; 2080/2079, 4096/4095, 4225/4224, 6656/6655, and 10648/10647 in the 13-limit.
Odd harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.77 | +0.78 | -1.08 | -1.43 | -0.45 | -0.83 | -1.42 | -0.74 | +0.25 | -0.31 | +0.01 |
Relative (%) | +26.0 | +26.3 | -36.4 | -48.0 | -15.1 | -27.7 | -47.7 | -24.8 | +8.5 | -10.4 | +0.5 | |
Steps (reduced) |
639 (236) |
936 (130) |
1131 (325) |
1277 (68) |
1394 (185) |
1491 (282) |
1574 (365) |
1647 (35) |
1712 (100) |
1770 (158) |
1823 (211) |
Subsets and supersets
Since 403 factors into 13 × 31, 403edo contains 13edo and 31edo as subsets.
Regular temperament properties
Subgroup | Comma List | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [639 -403⟩ | [⟨403 639]] | -0.2443 | 0.2443 | 8.20 |
2.3.5 | 1600000/1594323, [81 -13 -26⟩ | [⟨403 639 936]] | -0.2753 | 0.2042 | 6.86 |
2.3.5.7 | 3136/3125, 1600000/1594323, 2100875/2097152 | [⟨403 639 936 1131]] (403) | -0.3751 | 0.2473 | 8.31 |
2.3.5.7.11 | 3025/3024, 3136/3125, 12005/11979, 131072/130977 | [⟨403 639 936 1131 1394]] (403) | -0.0621 | 0.3160 | 10.61 |
2.3.5.7.11.13 | 2080/2079, 3025/3024, 3136/3125, 4096/4095, 12005/11979 | [⟨403 639 936 1131 1394 1491]] (403) | -0.0146 | 0.3074 | 10.32 |
2.3.5.7.11.13.17 | 595/594, 833/832, 1225/1224, 3025/3024, 3136/3125, 4096/4095 | [⟨403 639 936 1131 1394 1491 1647]] (403) | +0.0133 | 0.2927 | 9.83 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated Ratio* |
Temperaments |
---|---|---|---|---|
1 | 53\403 | 157.82 | 36756909/33554432 | Hemiegads |
1 | 106\403 | 315.63 | 6/5 | Egads |
1 | 114\403 | 339.45 | 243/200 | Amity (403defff) |
* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct