1323edo: Difference between revisions
mNo edit summary |
|||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{novelty}}{{stub}}{{Infobox ET}} | ||
{{EDO intro|1323}} | {{EDO intro|1323}} | ||
Revision as of 05:15, 9 July 2023
![]() |
This page presents a novelty topic.
It may contain ideas which are less likely to find practical applications in music, or numbers or structures that are arbitrary or exceedingly small, large, or complex. Novelty topics are often developed by a single person or a small group. As such, this page may also contain idiosyncratic terms, notation, or conceptual frameworks. |
![]() |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 1322edo | 1323edo | 1324edo → |
Theory
1323edo is the smallest uniquely consistent EDO in the 29-odd-limit.
It provides the optimal patent val for the 11-limit trinealimmal temperament, which has a period of 1\27 octave. In additoin, it tunes well 441 & 1308 temperament, which is a member of the augmented-cloudy equivalence continuum.
1323's divisors are 1, 3, 7, 9, 21, 27, 49, 63, 147, 189, 441, of which 441EDO is a member of the zeta edos. 1323edo shares the 7-limit mapping with 441edo. As such, it can be interpreted as an improvement for 441edo into the 29-limit by splitting each step of 441edo into three.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000 | +0.086 | +0.081 | -0.118 | +0.156 | +0.289 | +0.260 | -0.007 | +0.297 | -0.099 | -0.364 |
Relative (%) | +0.0 | +9.5 | +8.9 | -13.1 | +17.2 | +31.8 | +28.7 | -0.8 | +32.8 | -10.9 | -40.2 | |
Steps (reduced) |
1323 (0) |
2097 (774) |
3072 (426) |
3714 (1068) |
4577 (608) |
4896 (927) |
5408 (116) |
5620 (328) |
5985 (693) |
6427 (1135) |
6554 (1262) |
Regular temperament properties
Rank-2 temperaments
Periods per 8ve |
Generator (reduced) |
Cents (reduced) |
Associated ratio |
Temperaments |
---|---|---|---|---|
3 | 177\1323 | 160.544 | 154478651796875/140737488355328 | 441 & 1308 |
27 | 299\1323 (5\1323) |
271.201 (4.535) |
1375/1176 (?) |
Trinealimmal |