422edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Plumtree (talk | contribs)
m Infobox ET now computes most parameters automatically
Expansion and style
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
The '''422 equal divisions of the octave''' ('''422edo'''), or the '''422(-tone) equal temperament''' ('''422tet''', '''422et''') when viewed from a [[regular temperament]] perspective, divides the [[octave]] into 422 [[equal]] parts of 2.84 [[cent]]s each.
{{EDO intro|422}}


== Theory ==
== Theory ==
Line 7: Line 7:
=== Prime harmonics ===
=== Prime harmonics ===
{{Harmonics in equal|422|columns=11}}
{{Harmonics in equal|422|columns=11}}
=== Subsets and supersets ===
422edo has subset edos [[2edo]] and [[211edo]].


== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" | Subgroup
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve stretch (¢)
! rowspan="2" | Optimal<br>8ve Stretch (¢)
! colspan="2" | Tuning error
! colspan="2" | Tuning Error
|-
|-
! [[TE error|Absolute]] (¢)
! [[TE error|Absolute]] (¢)
Line 68: Line 71:
| 3.89
| 3.89
|}
|}
* 422et has lower absolute errors than any previous equal temperaments in the 17-, 19- and 23-limit. In the 17- and 19-limit it beats [[400edo|400]] and is bettered by [[460edo|460]]. In the 23-limit it beats [[373edo|373g]] and is bettered by [[525edo|525]].


=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
|+Table of rank-2 temperaments by generator
! Periods<br>per octave
! Periods<br>per 8ve
! Generator<br>(reduced)
! Generator<br>(Reduced)
! Cents<br>(reduced)
! Cents<br>(Reduced)
! Associated<br>ratio
! Associated<br>Ratio
! Temperaments
! Temperaments
|-
|-
Line 115: Line 119:
|}
|}


[[Category:Equal divisions of the octave|###]] <!-- 3-digit number -->
[[Category:Gamera]]
[[Category:Gamera]]
[[Category:Vishnu]]
[[Category:Vishnu]]

Revision as of 12:05, 3 July 2023

← 421edo 422edo 423edo →
Prime factorization 2 × 211
Step size 2.8436 ¢ 
Fifth 247\422 (702.37 ¢)
Semitones (A1:m2) 41:31 (116.6 ¢ : 88.15 ¢)
Consistency limit 27
Distinct consistency limit 27

Template:EDO intro

Theory

422edo is a zeta peak edo, though not zeta integral nor zeta gap. It is distinctly consistent through the 27-odd-limit, with harmonics of 3 through 23 all tuned sharp. In the 5-limit it tempers out the vishnuzma, [23 6 -14; and in the 7-limit 4375/4374 and 589824/588245 so that it supports the gamera temperament, and provides its optimal patent val, and also supports the vishnu temperament.

Prime harmonics

Approximation of prime harmonics in 422edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +0.41 +0.42 +0.84 +0.34 +1.18 +0.26 +1.07 +0.16 -0.19 +0.94
Relative (%) +0.0 +14.6 +14.6 +29.6 +12.0 +41.4 +9.1 +37.5 +5.7 -6.8 +32.9
Steps
(reduced)
422
(0)
669
(247)
980
(136)
1185
(341)
1460
(194)
1562
(296)
1725
(37)
1793
(105)
1909
(221)
2050
(362)
2091
(403)

Subsets and supersets

422edo has subset edos 2edo and 211edo.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [669 -422 [422 669]] -0.1308 0.1308 4.60
2.3.5 [23 6 -14, [33 -34 9 [422 669 980]] -0.1469 0.1092 3.84
2.3.5.7 4375/4374, 589824/588245, 29360128/29296875 [422 669 980 1185]] -0.1852 0.1155 4.06
2.3.5.7.11 3025/3024, 4375/4374, 5632/5625, 589824/588245 [422 669 980 1185 1460]] -0.1679 0.1090 3.83
2.3.5.7.11.13 1716/1715, 2080/2079, 2200/2197, 3025/3024, 5632/5625 [422 669 980 1185 1460 1562]] -0.1930 0.1142 4.02
2.3.5.7.11.13.17 1156/1155, 1275/1274, 1716/1715, 2080/2079, 2200/2197, 2431/2430 [422 669 980 1185 1460 1562 1725]] -0.1744 0.1151 4.05
2.3.5.7.11.13.17.19 1156/1155, 1216/1215, 1275/1274, 1331/1330, 1445/1444, 1716/1715, 2200/2197 [422 669 980 1185 1460 1562 1725 1793]] -0.1839 0.1106 3.89
  • 422et has lower absolute errors than any previous equal temperaments in the 17-, 19- and 23-limit. In the 17- and 19-limit it beats 400 and is bettered by 460. In the 23-limit it beats 373g and is bettered by 525.

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator
(Reduced)
Cents
(Reduced)
Associated
Ratio
Temperaments
1 81\422 230.33 8/7 Gamera
1 111\422 315.64 6/5 Egads
1 153\422 435.07 9/7 Supermajor
2 25\422 71.09 25/24 Vishnu / acyuta
2 81\422 230.33 8/7 Hemigamera
2 153\422
(58\422)
435.07
(164.93)
9/7
(11/10)
Semisupermajor