|
|
Line 3: |
Line 3: |
|
| |
|
| {{Primes in edo|98}} | | {{Primes in edo|98}} |
|
| |
| Since 98 EDO has a step of 12.245 cents, it also allows one to use its MOS scales as circulating temperaments. As ''2*7*[[7edo]]'', It is the first ''km<sup>n</sup>'' EDO which does this and the first EDO which allows one to use a Magic MOS scale as a circulating temperament.
| |
|
| |
| {| class="wikitable center-all"
| |
| |+ Circulating temperaments in 98 EDO
| |
| |-
| |
| ! Tones
| |
| ! Pattern
| |
| ! L:s
| |
| |-
| |
| | 5
| |
| | [[3L 2s]]
| |
| | 20:19
| |
| |-
| |
| | 6
| |
| | [[2L 4s]]
| |
| | 17:16
| |
| |-
| |
| | 7
| |
| | ''[[7 EDO]]''
| |
| | ''equal''
| |
| |-
| |
| | 8
| |
| | [[2L 6s]]
| |
| | 13:12
| |
| |-
| |
| | 9
| |
| | [[8L 1s]]
| |
| | 11:10
| |
| |-
| |
| | 10
| |
| | [[8L 2s]]
| |
| | 10:9
| |
| |-
| |
| | 11
| |
| | [[10L 1s]]
| |
| | rowspan="2" | 9:8
| |
| |-
| |
| | 12
| |
| | [[2L 10s]]
| |
| |-
| |
| | 13
| |
| | [[7L 6s]]
| |
| | 8:7
| |
| |-
| |
| | 14
| |
| | ''[[14 EDO]]''
| |
| | ''equal''
| |
| |-
| |
| | 15
| |
| | [[8L 7s]]
| |
| | rowspan="2" | 7:6
| |
| |-
| |
| | 16
| |
| | 2L 14s
| |
| |-
| |
| | 17
| |
| | 13L 4s
| |
| | rowspan="3" | 6:5
| |
| |-
| |
| | 18
| |
| | 8L 10s
| |
| |-
| |
| | 19
| |
| | [[3L 16s]]
| |
| |-
| |
| | 20
| |
| | 18L 2s
| |
| | rowspan="5" | 5:4
| |
| |-
| |
| | 21
| |
| | 14L 7s
| |
| |-
| |
| | 22
| |
| | 10L 12s
| |
| |-
| |
| | 23
| |
| | 6L 17s
| |
| |-
| |
| | 24
| |
| | 2L 22s
| |
| |-
| |
| | 25
| |
| | 23L 2s
| |
| | rowspan="8" | 4:3
| |
| |-
| |
| | 26
| |
| | 20L 6s
| |
| |-
| |
| | 27
| |
| | 17L 10s
| |
| |-
| |
| | 28
| |
| | 14L 14s
| |
| |-
| |
| | 29
| |
| | 11L 18s
| |
| |-
| |
| | 30
| |
| | 8L 22s
| |
| |-
| |
| | 31
| |
| | 5L 26s
| |
| |-
| |
| | 32
| |
| | 2L 30s
| |
| |-
| |
| | 33
| |
| | 32L 1s
| |
| | rowspan="16" | 3:2
| |
| |-
| |
| | 34
| |
| | 30L 4s
| |
| |-
| |
| | 35
| |
| | 28L 7s
| |
| |-
| |
| | 36
| |
| | 26L 10s
| |
| |-
| |
| | 37
| |
| | 24L 13s
| |
| |-
| |
| | 38
| |
| | 22L 16s
| |
| |-
| |
| | 39
| |
| | 20L 19s
| |
| |-
| |
| | 40
| |
| | 18L 22s
| |
| |-
| |
| | 41
| |
| | 16L 25s
| |
| |-
| |
| | 42
| |
| | 14L 28s
| |
| |-
| |
| | 43
| |
| | 12L 31s
| |
| |-
| |
| | 44
| |
| | 10L 34s
| |
| |-
| |
| | 45
| |
| | 8L 37s
| |
| |-
| |
| | 46
| |
| | 6L 40s
| |
| |-
| |
| | 47
| |
| | 4L 43s
| |
| |-
| |
| | 48
| |
| | 2L 46s
| |
| |-
| |
| | 49
| |
| | ''[[49 EDO]]''
| |
| | ''equal''
| |
| |-
| |
| | 50
| |
| | 48L 2s
| |
| | rowspan="29" | 2:1
| |
| |-
| |
| | 51
| |
| | 47L 4s
| |
| |-
| |
| | 52
| |
| | 46L 6s
| |
| |-
| |
| | 53
| |
| | 45L 8s
| |
| |-
| |
| | 54
| |
| | 44L 10s
| |
| |-
| |
| | 55
| |
| | 43L 12s
| |
| |-
| |
| | 56
| |
| | 42L 14s
| |
| |-
| |
| | 57
| |
| | 41L 16s
| |
| |-
| |
| | 58
| |
| | 40L 18s
| |
| |-
| |
| | 59
| |
| | 39L 20s
| |
| |-
| |
| | 60
| |
| | 38L 22s
| |
| |-
| |
| | 61
| |
| | 37L 24s
| |
| |-
| |
| | 62
| |
| | 36L 26s
| |
| |-
| |
| | 63
| |
| | 35L 28s
| |
| |-
| |
| | 64
| |
| | 34L 30s
| |
| |-
| |
| | 65
| |
| | 33L 32s
| |
| |-
| |
| | 66
| |
| | 32L 34s
| |
| |-
| |
| | 67
| |
| | 31L 36s
| |
| |-
| |
| | 68
| |
| | 30L 38s
| |
| |-
| |
| | 69
| |
| | 29L 40s
| |
| |-
| |
| | 70
| |
| | 28L 42s
| |
| |-
| |
| | 71
| |
| | 27L 44s
| |
| |-
| |
| | 72
| |
| | 26L 46s
| |
| |-
| |
| | 73
| |
| | 25L 48s
| |
| |-
| |
| | 74
| |
| | 24L 50s
| |
| |-
| |
| | 75
| |
| | 23L 52s
| |
| |-
| |
| | 76
| |
| | 22L 54s
| |
| |-
| |
| | 77
| |
| | 21L 56s
| |
| |-
| |
| | 78
| |
| | 20L 58s
| |
| |}
| |
|
| |
|
| [[Category:Equal divisions of the octave|##]] <!-- 2-digit number --> | | [[Category:Equal divisions of the octave|##]] <!-- 2-digit number --> |
| [[Category:Meantone]] | | [[Category:Meantone]] |
Revision as of 13:44, 30 May 2023
Prime factorization
|
2 × 72
|
Step size
|
12.2449 ¢
|
Fifth
|
57\98 (697.959 ¢)
|
Semitones (A1:m2)
|
7:9 (85.71 ¢ : 110.2 ¢)
|
Consistency limit
|
3
|
Distinct consistency limit
|
3
|
98 EDO, the 98 equal temperament divides the octave into equal parts of 12.245 cents each. The patent val has a flat 3, a sharp 5 and a slightly flat 7, and tempers out 81/80 in the 5-limit, making it a system of meantone family with a 4-cent-flat fifth. In the 7-limit it tempers out 1029/1024, 1728/1715, supporting mothra temperament, in the 11-limit 176/175 and 540/539, supporting mosura, and in the 13-limit 144/143 and 196/195. It provides the optimal patent val for 13-limit mosura temperament.
Script error: No such module "primes_in_edo".