57edf: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Plumtree (talk | contribs)
m Infobox ET added
Francium (talk | contribs)
Linking EDOs to their respective pages
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
'''57EDF''' is the [[EDF|equal division of the just perfect fifth]] into 57 parts of 12.3150 [[cent|cents]] each, corresponding to 97.4421 [[edo]]. It is related to the regular temperament which tempers out |-32 33 0 -6 -1> and |76 -8 0 -9 -11> in the 11-limit, which is supported by 877, 3313, 4190, 5067, 5944, 6821, 7698, and 11011 EDOs.
'''57EDF''' is the [[EDF|equal division of the just perfect fifth]] into 57 parts of 12.3150 [[cent|cents]] each, corresponding to 97.4421 [[edo]]. It is related to the regular temperament which tempers out |-32 33 0 -6 -1> and |76 -8 0 -9 -11> in the 11-limit, which is supported by [[877edo|877]], [[3313edo|3313]], [[4190edo|4190]], [[5067edo|5067]], [[5944edo|5944]], [[6821edo|6821]], [[7698edo|7698]], and [[11011edo|11011]] EDOs.


==Related regular temperaments==
==Related regular temperaments==
Line 10: Line 10:
Mapping: [<1 1 -1|, <0 57 371|]
Mapping: [<1 1 -1|, <0 57 371|]


EDOs: 877, 4190, 5067, 5944, 6821, 7698, 8575
EDOs: {{EDOs|877, 4190, 5067, 5944, 6821, 7698, 8575}}


===2.3.7.11 subgroup 877&5067===
===2.3.7.11 subgroup 877&5067===
Line 19: Line 19:
Mapping: [<1 1 -1 7|, <0 57 371 -345|]
Mapping: [<1 1 -1 7|, <0 57 371 -345|]


EDOs: 877, 3313, 4190, 5067, 5944, 6821, 7698, 11011
EDOs: {{EDOs|877, 3313, 4190, 5067, 5944, 6821, 7698, 11011}}


===2.3.7.11.13 subgroup 877&5067===
===2.3.7.11.13 subgroup 877&5067===
Line 28: Line 28:
Mapping: [<1 1 -1 7 -10|, <0 57 371 -345 1335|]
Mapping: [<1 1 -1 7 -10|, <0 57 371 -345 1335|]


EDOs: 877, 3313, 4190, 5067, 5944, 9257
EDOs: {{EDOs|877, 3313, 4190, 5067, 5944, 9257}}


[[Category:Edf]]
[[Category:Edf]]
[[Category:Edonoi]]
[[Category:Edonoi]]

Revision as of 07:41, 7 May 2023

← 56edf 57edf 58edf →
Prime factorization 3 × 19
Step size 12.315 ¢ 
Octave 97\57edf (1194.56 ¢)
Twelfth 154\57edf (1896.51 ¢)
Consistency limit 3
Distinct consistency limit 3

57EDF is the equal division of the just perfect fifth into 57 parts of 12.3150 cents each, corresponding to 97.4421 edo. It is related to the regular temperament which tempers out |-32 33 0 -6 -1> and |76 -8 0 -9 -11> in the 11-limit, which is supported by 877, 3313, 4190, 5067, 5944, 6821, 7698, and 11011 EDOs.

Related regular temperaments

2.3.7 subgroup 877&5067

Commas: |-428 371 0 -57>

POTE generator: ~1605632/1594323 = 12.3149

Mapping: [<1 1 -1|, <0 57 371|]

EDOs: 877, 4190, 5067, 5944, 6821, 7698, 8575

2.3.7.11 subgroup 877&5067

Commas: |-32 33 0 -6 -1>, |76 -8 0 -9 -11>

POTE generator: ~1605632/1594323 = 12.3150

Mapping: [<1 1 -1 7|, <0 57 371 -345|]

EDOs: 877, 3313, 4190, 5067, 5944, 6821, 7698, 11011

2.3.7.11.13 subgroup 877&5067

Commas: 257330216/257298363, 53722307808/53710650917, 1786706395136/1786568061663

POTE generator: ~1605632/1594323 = 12.3150

Mapping: [<1 1 -1 7 -10|, <0 57 371 -345 1335|]

EDOs: 877, 3313, 4190, 5067, 5944, 9257