41edt: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Plumtree (talk | contribs)
m Infobox ET added
Francium (talk | contribs)
No edit summary
Line 2: Line 2:
'''[[Edt|Division of the third harmonic]] into 41 equal parts''' (41edt) is related to [[26edo|26 edo]], but with the 3/1 rather than the 2/1 being just. The octave is about 6.1178 cents stretched and the step size is about 46.3891 cents. Unlike 26edo, it is only consistent up to the [[9-odd-limit|10-integer-limit]], with discrepancy for the 11th harmonic.
'''[[Edt|Division of the third harmonic]] into 41 equal parts''' (41edt) is related to [[26edo|26 edo]], but with the 3/1 rather than the 2/1 being just. The octave is about 6.1178 cents stretched and the step size is about 46.3891 cents. Unlike 26edo, it is only consistent up to the [[9-odd-limit|10-integer-limit]], with discrepancy for the 11th harmonic.


41edt is related to the regular  temperament which tempers out 823543/820125 and 2199023255552/2197176384375 in the 7-limit, which is supported by [[181edo|181]], [[207edo|207]], [[388edo|388]], 569, and 595 EDOs.
41edt is related to the regular  temperament which tempers out 823543/820125 and 2199023255552/2197176384375 in the 7-limit, which is supported by [[181edo|181]], [[207edo|207]], [[388edo|388]], [[569edo|569]], and [[595edo|595]] EDOs.


=Related regular temperaments=
=Related regular temperaments=
Line 13: Line 13:
Mapping: [<1 0 7|, <0 41 -121|]
Mapping: [<1 0 7|, <0 41 -121|]


EDOs: 181, 207, 388, 569, 595, 957, 1345
EDOs: {{EDOs|181, 207, 388, 569, 595, 957, 1345}}


Badness: 17.5651
Badness: 17.5651
Line 24: Line 24:
Mapping: [<1 0 7 3|, <0 41 -121 -5|]
Mapping: [<1 0 7 3|, <0 41 -121 -5|]


EDOs: 181, 207, 388, 569, 595
EDOs: {{EDOs|181, 207, 388, 569, 595}}


Badness: 0.6461
Badness: 0.6461
Line 35: Line 35:
Mapping: [<1 0 7 3 4|, <0 41 -121 -5 -14|]
Mapping: [<1 0 7 3 4|, <0 41 -121 -5 -14|]


EDOs: 181, 207, 388, 569, 595
EDOs: {{EDOs|181, 207, 388, 569, 595}}


Badness: 0.1362
Badness: 0.1362
Line 46: Line 46:
Mapping: [<1 0 7 3 4 2|, <0 41 -121 -5 -14 44|]
Mapping: [<1 0 7 3 4 2|, <0 41 -121 -5 -14 44|]


EDOs: 181, 207, 388, 569, 595
EDOs: {{EDOs|181, 207, 388, 569, 595}}


Badness: 0.0707
Badness: 0.0707
Line 57: Line 57:
Mapping: [<1 0 7 3 4 2 2|, <0 41 -121 -5 -14 44 54|]
Mapping: [<1 0 7 3 4 2 2|, <0 41 -121 -5 -14 44 54|]


EDOs: 181, 207, 388, 569, 595
EDOs: {{EDOs|181, 207, 388, 569, 595}}


Badness: 0.0411
Badness: 0.0411
Line 69: Line 69:
Mapping: [<2 0 -1|, <0 41 73|]
Mapping: [<2 0 -1|, <0 41 73|]


EDOs: 26, 388, 414, 802, 1190, 1578, 1966, 2354
EDOs: {{EDOs|26, 388, 414, 802, 1190, 1578, 1966, 2354}}


Badness: 3.9285
Badness: 3.9285
Line 80: Line 80:
Mapping: [<2 0 -1 6|, <0 41 73 -5|]
Mapping: [<2 0 -1 6|, <0 41 73 -5|]


EDOs: 26, 362, 388, 414, 802
EDOs: {{EDOs|26, 362, 388, 414, 802}}


Badness: 0.4543
Badness: 0.4543
Line 91: Line 91:
Mapping: [<2 0 -1 6 8|, <0 41 73 -5 -14|]
Mapping: [<2 0 -1 6 8|, <0 41 73 -5 -14|]


EDOs: 26, 362, 388, 414, 802
EDOs: {{EDOs|26, 362, 388, 414, 802}}


Badness: 0.1020
Badness: 0.1020
Line 102: Line 102:
Mapping: [<2 0 -1 6 8 4|, <0 41 73 -5 -14 44|]
Mapping: [<2 0 -1 6 8 4|, <0 41 73 -5 -14 44|]


EDOs: 26, 362, 388, 414, 802
EDOs: {{EDOs|26, 362, 388, 414, 802}}


Badness: 0.0595
Badness: 0.0595
Line 113: Line 113:
Mapping: [<2 0 -1 6 8 4 4|, <0 41 73 -5 -14 44 54|]
Mapping: [<2 0 -1 6 8 4 4|, <0 41 73 -5 -14 44 54|]


EDOs: 26, 362, 388, 414, 802
EDOs: {{EDOs|26, 362, 388, 414, 802}}


Badness: 0.0326
Badness: 0.0326

Revision as of 07:55, 19 April 2023

← 40edt 41edt 42edt →
Prime factorization 41 (prime)
Step size 46.3891 ¢ 
Octave 26\41edt (1206.12 ¢)
Consistency limit 10
Distinct consistency limit 9

Division of the third harmonic into 41 equal parts (41edt) is related to 26 edo, but with the 3/1 rather than the 2/1 being just. The octave is about 6.1178 cents stretched and the step size is about 46.3891 cents. Unlike 26edo, it is only consistent up to the 10-integer-limit, with discrepancy for the 11th harmonic.

41edt is related to the regular temperament which tempers out 823543/820125 and 2199023255552/2197176384375 in the 7-limit, which is supported by 181, 207, 388, 569, and 595 EDOs.

Related regular temperaments

181&207 temperament

5-limit

Comma: |287 -121 -41>

POTE generator: ~|140 -59 -20> = 46.3927

Mapping: [<1 0 7|, <0 41 -121|]

EDOs: 181, 207, 388, 569, 595, 957, 1345

Badness: 17.5651

7-limit

Commas: 823543/820125, 2199023255552/2197176384375

POTE generator: ~131072/127575 = 46.3932

Mapping: [<1 0 7 3|, <0 41 -121 -5|]

EDOs: 181, 207, 388, 569, 595

Badness: 0.6461

11-limit

Commas: 42592/42525, 43923/43904, 184877/184320

POTE generator: ~352/343 = 46.3934

Mapping: [<1 0 7 3 4|, <0 41 -121 -5 -14|]

EDOs: 181, 207, 388, 569, 595

Badness: 0.1362

13-limit

Commas: 847/845, 4096/4095, 4459/4455, 17303/17280

POTE generator: ~352/343 = 46.3921

Mapping: [<1 0 7 3 4 2|, <0 41 -121 -5 -14 44|]

EDOs: 181, 207, 388, 569, 595

Badness: 0.0707

17-limit

Commas: 833/832, 847/845, 1089/1088, 2058/2057, 2431/2430

POTE generator: ~187/182 = 46.3918

Mapping: [<1 0 7 3 4 2 2|, <0 41 -121 -5 -14 44 54|]

EDOs: 181, 207, 388, 569, 595

Badness: 0.0411

26&388 temperament

5-limit

Comma: |-41 146 -82>

POTE generator: ~|-16 57 -32> = 46.3883

Mapping: [<2 0 -1|, <0 41 73|]

EDOs: 26, 388, 414, 802, 1190, 1578, 1966, 2354

Badness: 3.9285

7-limit

Commas: 4375/4374, |-62 -1 2 21>

POTE generator: ~17294403/16777216 = 46.3835

Mapping: [<2 0 -1 6|, <0 41 73 -5|]

EDOs: 26, 362, 388, 414, 802

Badness: 0.4543

11-limit

Commas: 3025/3024, 4375/4374, 5931980229/5905580032

POTE generator: ~352/343 = 46.3827

Mapping: [<2 0 -1 6 8|, <0 41 73 -5 -14|]

EDOs: 26, 362, 388, 414, 802

Badness: 0.1020

13-limit

Commas: 2200/2197, 3025/3024, 4375/4374, 50421/50336

POTE generator: ~352/343 = 46.3825

Mapping: [<2 0 -1 6 8 4|, <0 41 73 -5 -14 44|]

EDOs: 26, 362, 388, 414, 802

Badness: 0.0595

17-limit

Commas: 833/832, 1089/1088, 1225/1224, 1701/1700, 2200/2197

POTE generator: ~187/182 = 46.3824

Mapping: [<2 0 -1 6 8 4 4|, <0 41 73 -5 -14 44 54|]

EDOs: 26, 362, 388, 414, 802

Badness: 0.0326