Syntonic–kleismic equivalence continuum: Difference between revisions
→Oviminor: description copied |
Not everything here is worth documenting |
||
Line 21: | Line 21: | ||
|- | |- | ||
| 1 | | 1 | ||
| | | 7c & 12c | ||
| [[71744535/67108864]] | | [[71744535/67108864]] | ||
| {{monzo|-26 15 1}} | | {{monzo|-26 15 1}} | ||
|- | |- | ||
| 2 | | 2 | ||
| [[High badness temperaments#Hogzilla|Hogzilla]] | | [[High badness temperaments #Hogzilla|Hogzilla]] | ||
| [[4428675/4194304]] | | [[4428675/4194304]] | ||
| {{monzo|-22 11 2}} | | {{monzo|-22 11 2}} | ||
|- | |- | ||
| 3 | | 3 | ||
| [[High badness temperaments#Stump|Stump]] | | [[High badness temperaments #Stump|Stump]] | ||
| [[273375/262144]] | | [[273375/262144]] | ||
| {{monzo|-18 7 3}} | | {{monzo|-18 7 3}} | ||
Line 78: | Line 78: | ||
Examples of temperaments with fractional values of ''k'': | Examples of temperaments with fractional values of ''k'': | ||
* | * 8c & 11 (''n'' = 3.5) | ||
* [[High badness temperaments#Unsmate|Unsmate]] ('' | * [[High badness temperaments#Unsmate|Unsmate]] (''n'' = 4.5) | ||
* [[Sycamore family#Sycamore|Sycamore]] ('' | * [[Sycamore family#Sycamore|Sycamore]] (''n'' = 5.5) | ||
* [[Counterhanson]] ('' | * [[Counterhanson]] (''n'' = 25/4 = 6.25) | ||
* [[Enneadecal]] ('' | * [[Enneadecal]] (''n'' = 19/3 = 6.{{overline|3}}) | ||
* [[Very high accuracy temperaments#Egads|Egads]] ('' | * [[Very high accuracy temperaments#Egads|Egads]] (''n'' = 51/8 = 6.375) | ||
* [[Acrokleismic]] ('' | * [[Acrokleismic]] (''n'' = 32/5 = 6.4) | ||
* [[Parakleismic]] (''n'' = 6.5) | |||
* [[Parakleismic]] ('' | * [[Countermeantone]] (''n'' = 20/3 = 6.{{overline|6}}) | ||
* [[Countermeantone]] ('' | * [[Mowgli]] (''n'' = 7.5) | ||
* [[Mowgli]] ('' | |||
== Lalasepyo (8c & 11) == | |||
== Lalasepyo (8c & | |||
[[Subgroup]]: 2.3.5 | [[Subgroup]]: 2.3.5 | ||
Line 132: | Line 118: | ||
[[Badness]]: 0.317551 | [[Badness]]: 0.317551 | ||
== Countermeantone == | == Countermeantone == |
Revision as of 11:09, 21 April 2023
The syntonic-kleismic equivalence continuum (or syntonic-enneadecal equivalence continuum) is a continuum of 5-limit temperaments which equate a number of syntonic commas (81/80) with the 19-comma ([-30 19⟩).
All temperaments in the continuum satisfy (81/80)n ~ [-30 19⟩. Varying n results in different temperaments listed in the table below. It converges to meantone as n approaches infinity. If we allow non-integer and infinite n, the continuum describes the set of all 5-limit temperaments supported by 19edo (due to it being the unique equal temperament that tempers both commas and thus tempers all combinations of them). The just value of n is approximately 6.376…, and temperaments having n near this value tend to be the most accurate ones.
This continuum can also be expressed as the relationship between 81/80 and the enneadeca ([-14 -19 19⟩). That is, (81/80)k ~ [-14 -19 19⟩. In this case, k = 3n - 19.
n | Temperament | Comma | |
---|---|---|---|
Ratio | Monzo | ||
0 | 19 & 19c | 1162261467/1073741824 | [-30 19⟩ |
1 | 7c & 12c | 71744535/67108864 | [-26 15 1⟩ |
2 | Hogzilla | 4428675/4194304 | [-22 11 2⟩ |
3 | Stump | 273375/262144 | [-18 7 3⟩ |
4 | Negri | 16875/16384 | [-14 3 4⟩ |
5 | Magic | 3125/3072 | [-10 -1 5⟩ |
6 | Hanson | 15625/15552 | [-6 -5 6⟩ |
7 | Sensi | 78732/78125 | [2 9 -7⟩ |
8 | Unicorn | 1594323/1562500 | [-2 13 -8⟩ |
9 | 19 & 51c | 129140163/125000000 | [-6 17 -9⟩ |
… | … | … | … |
∞ | Meantone | 81/80 | [-4 4 -1⟩ |
Examples of temperaments with fractional values of k:
- 8c & 11 (n = 3.5)
- Unsmate (n = 4.5)
- Sycamore (n = 5.5)
- Counterhanson (n = 25/4 = 6.25)
- Enneadecal (n = 19/3 = 6.3)
- Egads (n = 51/8 = 6.375)
- Acrokleismic (n = 32/5 = 6.4)
- Parakleismic (n = 6.5)
- Countermeantone (n = 20/3 = 6.6)
- Mowgli (n = 7.5)
Lalasepyo (8c & 11)
Subgroup: 2.3.5
Comma list: [-32 10 7⟩ = 4613203125/4294967296
Mapping: [⟨1 -1 6], ⟨0 7 -10]]
POTE generator: ~675/512 = 442.2674 cents
Badness: 1.061630
The temperament finder - 5-limit 19 & 8c
Counterhanson
Subgroup: 2.3.5
Comma list: [-20 -24 25⟩ = 298023223876953125/296148833645101056
Mapping: [⟨1 -5 -4], ⟨0 25 2 4]]
Optimal tuning (POTE): ~6/5 = 316.081
Badness: 0.317551
Countermeantone
Subgroup: 2.3.5
Comma list: [10 23 -20⟩ = 96402615118848/95367431640625
Mapping: [⟨1 10 12], ⟨0 -20 -23]]
Optimal tuning (POTE): ~104976/78125 = 504.913
Badness: 0.373477
Mowgli
Subgroup: 2.3.5
Comma list: [0 22 -15⟩
Mapping: [⟨1 0 0], ⟨0 15 22]]
Optimal tuning (POTE): ~27/25 = 126.7237
Badness: 0.653871
Oviminor
Oviminor is named after the facts that it takes 184 minor thirds of 6/5 to reach 4/3, the Roman consul was Eggius in the year 184 AD, and the Latin word for egg is ovum, and with prefix ovi-. It sets a new record of complexity for a chain of nineteen 6/5's past egads, though it is less accurate.
Subgroup: 2.3.5
Comma list: [-134 -185 184⟩
Mapping: [⟨1 50 51], ⟨0 -184 -185]]
Optimal tuning (CTE): ~6/5 = 315.7501
Badness: 32.0