Syntonic–kleismic equivalence continuum: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Oviminor: description copied
Not everything here is worth documenting
Line 21: Line 21:
|-
|-
| 1
| 1
| Lalayo
| 7c & 12c
| [[71744535/67108864]]
| [[71744535/67108864]]
| {{monzo|-26 15 1}}
| {{monzo|-26 15 1}}
|-
|-
| 2
| 2
| [[High badness temperaments#Hogzilla|Hogzilla]]
| [[High badness temperaments #Hogzilla|Hogzilla]]
| [[4428675/4194304]]
| [[4428675/4194304]]
| {{monzo|-22 11 2}}
| {{monzo|-22 11 2}}
|-
|-
| 3
| 3
| [[High badness temperaments#Stump|Stump]]
| [[High badness temperaments #Stump|Stump]]
| [[273375/262144]]
| [[273375/262144]]
| {{monzo|-18 7 3}}
| {{monzo|-18 7 3}}
Line 78: Line 78:
Examples of temperaments with fractional values of ''k'':
Examples of temperaments with fractional values of ''k'':


* 19 & 8c (''k'' = 3.5)
* 8c & 11 (''n'' = 3.5)
* [[High badness temperaments#Unsmate|Unsmate]] (''k'' = 4.5)
* [[High badness temperaments#Unsmate|Unsmate]] (''n'' = 4.5)
* [[Sycamore family#Sycamore|Sycamore]] (''k'' = 5.5)
* [[Sycamore family#Sycamore|Sycamore]] (''n'' = 5.5)
* [[Counterhanson]] (''k'' = 25/4 = 6.25)
* [[Counterhanson]] (''n'' = 25/4 = 6.25)
* [[Enneadecal]] (''k'' = 19/3 = 6.{{overline|3}})
* [[Enneadecal]] (''n'' = 19/3 = 6.{{overline|3}})
* [[Very high accuracy temperaments#Egads|Egads]] (''k'' = 51/8 = 6.375)
* [[Very high accuracy temperaments#Egads|Egads]] (''n'' = 51/8 = 6.375)
* [[Acrokleismic]] (''k'' = 32/5 = 6.4)
* [[Acrokleismic]] (''n'' = 32/5 = 6.4)
* 19 & 506 (''k'' = 58/9 = 6.{{overline|4}})
* [[Parakleismic]] (''n'' = 6.5)
* [[Parakleismic]] (''k'' = 6.5)
* [[Countermeantone]] (''n'' = 20/3 = 6.{{overline|6}})
* [[Countermeantone]] (''k'' = 20/3 = 6.{{overline|6}})
* [[Mowgli]] (''n'' = 7.5)
* [[Mowgli]] (''k'' = 7.5)


== Lalayo ==
== Lalasepyo (8c & 11) ==
[[Subgroup]]: 2.3.5
 
[[Comma list]]: {{monzo| -26 15 1 }} = 71744535/67108864
 
[[Mapping]]: [{{val| 1 2 -4 }}, {{val| 0 -1 15 }}]
 
[[POTE generator]]: ~4/3 = 505.348 cents
 
{{Val list|legend=1| 7c, 12c, 19 }}
 
[[Badness]]: 0.803397
 
== Lalasepyo (8c & 19) ==
[[Subgroup]]: 2.3.5
[[Subgroup]]: 2.3.5


Line 132: Line 118:


[[Badness]]: 0.317551
[[Badness]]: 0.317551
== 19 & 506 ==
[[Subgroup]]: 2.3.5
[[Comma list]]: {{monzo| 38 61 -58 }}
[[Mapping]]: [{{val| 1 26 28 }}, {{val| 0 -58 -61 }}]
[[Optimal tuning]] ([[POTE]]): ~{{monzo| -12 -20 19 }} = 505.1394
{{Val list|legend=1| 19, 468, 487, 506, 1031 }}
[[Badness]]: 2.105450
[http://x31eq.com/cgi-bin/rt.cgi?ets=19_506&limit=5 The temperament finder - 5-limit 19 & 506]


== Countermeantone ==
== Countermeantone ==

Revision as of 11:09, 21 April 2023

The syntonic-kleismic equivalence continuum (or syntonic-enneadecal equivalence continuum) is a continuum of 5-limit temperaments which equate a number of syntonic commas (81/80) with the 19-comma ([-30 19).

All temperaments in the continuum satisfy (81/80)n ~ [-30 19. Varying n results in different temperaments listed in the table below. It converges to meantone as n approaches infinity. If we allow non-integer and infinite n, the continuum describes the set of all 5-limit temperaments supported by 19edo (due to it being the unique equal temperament that tempers both commas and thus tempers all combinations of them). The just value of n is approximately 6.376…, and temperaments having n near this value tend to be the most accurate ones.

This continuum can also be expressed as the relationship between 81/80 and the enneadeca ([-14 -19 19). That is, (81/80)k ~ [-14 -19 19. In this case, k = 3n - 19.

Temperaments in the continuum
n Temperament Comma
Ratio Monzo
0 19 & 19c 1162261467/1073741824 [-30 19
1 7c & 12c 71744535/67108864 [-26 15 1
2 Hogzilla 4428675/4194304 [-22 11 2
3 Stump 273375/262144 [-18 7 3
4 Negri 16875/16384 [-14 3 4
5 Magic 3125/3072 [-10 -1 5
6 Hanson 15625/15552 [-6 -5 6
7 Sensi 78732/78125 [2 9 -7
8 Unicorn 1594323/1562500 [-2 13 -8
9 19 & 51c 129140163/125000000 [-6 17 -9
Meantone 81/80 [-4 4 -1

Examples of temperaments with fractional values of k:

Lalasepyo (8c & 11)

Subgroup: 2.3.5

Comma list: [-32 10 7 = 4613203125/4294967296

Mapping: [1 -1 6], 0 7 -10]]

POTE generator: ~675/512 = 442.2674 cents

Template:Val list

Badness: 1.061630

The temperament finder - 5-limit 19 & 8c

Counterhanson

Subgroup: 2.3.5

Comma list: [-20 -24 25 = 298023223876953125/296148833645101056

Mapping: [1 -5 -4], 0 25 2 4]]

Optimal tuning (POTE): ~6/5 = 316.081

Template:Val list

Badness: 0.317551

Countermeantone

Subgroup: 2.3.5

Comma list: [10 23 -20 = 96402615118848/95367431640625

Mapping: [1 10 12], 0 -20 -23]]

Optimal tuning (POTE): ~104976/78125 = 504.913

Template:Val list

Badness: 0.373477

Mowgli

Subgroup: 2.3.5

Comma list: [0 22 -15

Mapping: [1 0 0], 0 15 22]]

Optimal tuning (POTE): ~27/25 = 126.7237

Template:Val list

Badness: 0.653871

Oviminor

Oviminor is named after the facts that it takes 184 minor thirds of 6/5 to reach 4/3, the Roman consul was Eggius in the year 184 AD, and the Latin word for egg is ovum, and with prefix ovi-. It sets a new record of complexity for a chain of nineteen 6/5's past egads, though it is less accurate.

Subgroup: 2.3.5

Comma list: [-134 -185 184

Mapping: [1 50 51], 0 -184 -185]]

Optimal tuning (CTE): ~6/5 = 315.7501

Template:Val list

Badness: 32.0