265edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Plumtree (talk | contribs)
m Infobox ET added
Eliora (talk | contribs)
No edit summary
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
The '''265 equal division''' divides the octave into 265 equal parts of 4.528 cents each. It is [[contorted]] in the 5-limit, tempering out the same commas as [[53edo|53edo]], including 15625/15552 and 32805/32768. In the 7-limit it tempers out 16875/16807 and 420175/419904, so that it [[support]]s [[Kleismic_family#Sqrtphi|sqrtphi temperament]], for which it provides the [[Optimal_patent_val|optimal patent val]]. In the 11-limit it tempers out 540/539, 1375/1372 and 4375/4356, and gives the optimal patent val for 11-limit sqrtphi temperament.
{{EDO intro|265}}
 
It is [[contorted]] in the 5-limit, tempering out the same commas as [[53edo|53edo]], including 15625/15552 and 32805/32768. In the 7-limit it tempers out 16875/16807 and 420175/419904, so that it [[support]]s [[Kleismic_family#Sqrtphi|sqrtphi temperament]], for which it provides the [[Optimal_patent_val|optimal patent val]]. In the 11-limit it tempers out 540/539, 1375/1372 and 4375/4356, and gives the optimal patent val for 11-limit sqrtphi temperament.
=== Prime harmonics ===
{{harmonics in equal|265}}


[[Category:Equal divisions of the octave|###]] <!-- 3-digit number -->
[[Category:Equal divisions of the octave|###]] <!-- 3-digit number -->

Revision as of 18:10, 3 June 2023

← 264edo 265edo 266edo →
Prime factorization 5 × 53
Step size 4.5283 ¢ 
Fifth 155\265 (701.887 ¢) (→ 31\53)
Semitones (A1:m2) 25:20 (113.2 ¢ : 90.57 ¢)
Consistency limit 9
Distinct consistency limit 9

Template:EDO intro

It is contorted in the 5-limit, tempering out the same commas as 53edo, including 15625/15552 and 32805/32768. In the 7-limit it tempers out 16875/16807 and 420175/419904, so that it supports sqrtphi temperament, for which it provides the optimal patent val. In the 11-limit it tempers out 540/539, 1375/1372 and 4375/4356, and gives the optimal patent val for 11-limit sqrtphi temperament.

Prime harmonics

Approximation of prime harmonics in 265edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -0.07 -1.41 +0.23 +1.13 +1.74 -0.80 +1.35 +1.16 -1.65 +0.62
Relative (%) +0.0 -1.5 -31.1 +5.1 +25.1 +38.3 -17.8 +29.9 +25.6 -36.5 +13.8
Steps
(reduced)
265
(0)
420
(155)
615
(85)
744
(214)
917
(122)
981
(186)
1083
(23)
1126
(66)
1199
(139)
1287
(227)
1313
(253)