55edo: Difference between revisions
m Used 15-odd-limit template, cleanup |
→Intervals: added ups and downs names |
||
Line 1: | Line 1: | ||
'''55edo''' divides the octave into 55 parts of 21.818{{cent}}. It can be used for a meantone tuning, and is close to [[1-6_Syntonic_Comma_Meantone|1/6 comma meantone]] (and is almost exactly 10/57 comma meantone.) [ | '''55edo''' divides the octave into 55 parts of 21.818{{cent}}. It can be used for a meantone tuning, and is close to [[1-6_Syntonic_Comma_Meantone|1/6 comma meantone]] (and is almost exactly 10/57 comma meantone.) [https://en.wikipedia.org/wiki/Georg_Philipp_Telemann Telemann] suggested it as a theoretical basis for analyzing the intervals of meantone, in which he was followed by [https://en.wikipedia.org/wiki/Leopold_Mozart Leopold] and [https://en.wikipedia.org/wiki/Wolfgang_Amadeus_Mozart Wolfgang Mozart]. It can also be used for [[Meantone_family|mohajira and liese]] temperaments. | ||
== Theory == | == Theory == | ||
Line 18: | Line 18: | ||
! [[Cent]]s | ! [[Cent]]s | ||
! Approximate ratios | ! Approximate ratios | ||
! colspan="3" |[[Ups and downs notation|ups and downs]] notation | |||
|- | |- | ||
| 0 | | 0 | ||
| 0.000 | | 0.000 | ||
| 1/1 | | 1/1 | ||
|P1 | |||
|perfect 1sn | |||
|D | |||
|- | |- | ||
| 1 | | 1 | ||
| 21.818 | | 21.818 | ||
| 128/125, 64/63, 65/64, 78/77, 91/90, 99/98, ''81/80'' | | 128/125, 64/63, 65/64, 78/77, | ||
91/90, 99/98, ''81/80'' | |||
|^1 | |||
|up 1sn | |||
|^D | |||
|- | |- | ||
| 2 | | 2 | ||
| 43.636 | | 43.636 | ||
| 36/35 | | 36/35 | ||
|^^1 | |||
|dup 1sn | |||
|^^D | |||
|- | |- | ||
| 3 | | 3 | ||
| 65.4545 | | 65.4545 | ||
| 28/27, ''25/24'' | | 28/27, ''25/24'' | ||
|vvm2 | |||
|dudminor 2nd | |||
|vvEb | |||
|- | |- | ||
| 4 | | 4 | ||
| 87.273 | | 87.273 | ||
| 25/24, 21/20 | | 25/24, 21/20 | ||
|vm2 | |||
|downminor 2nd | |||
|vEb | |||
|- | |- | ||
| 5 | | 5 | ||
| 109.091 | | 109.091 | ||
| 16/15 | | 16/15 | ||
|m2 | |||
|minor 2nd | |||
|Eb | |||
|- | |- | ||
| 6 | | 6 | ||
| 130.909 | | 130.909 | ||
| 14/13, ''13/12'' | | 14/13, ''13/12'' | ||
|^m2 | |||
|upminor 2nd | |||
|^Eb | |||
|- | |- | ||
| 7 | | 7 | ||
| 152.727 | | 152.727 | ||
| 13/12, 12/11 | | 13/12, 12/11 | ||
|~2 | |||
|mid 2nd | |||
|vvE | |||
|- | |- | ||
| 8 | | 8 | ||
| 174.5455 | | 174.5455 | ||
| 11/10, ''10/9'' | | 11/10, ''10/9'' | ||
|vM2 | |||
|downmajor 2nd | |||
|vE | |||
|- | |- | ||
| 9 | | 9 | ||
| 196.364 | | 196.364 | ||
| 9/8, 10/9 | | 9/8, 10/9 | ||
|M2 | |||
|major 2nd | |||
|E | |||
|- | |- | ||
| 10 | | 10 | ||
| 218.182 | | 218.182 | ||
| 17/15 | | 17/15 | ||
|^M2 | |||
|upmajor 2nd | |||
|^E | |||
|- | |- | ||
| 11 | | 11 | ||
| 240 | | 240 | ||
| 8/7, 15/13 | | 8/7, 15/13 | ||
|^^M2 | |||
|dupmajor 2nd | |||
|^^E | |||
|- | |- | ||
| 12 | | 12 | ||
| 261.818 | | 261.818 | ||
| 7/6 | | 7/6 | ||
|vvm3 | |||
|dudminor 3rd | |||
|vvF | |||
|- | |- | ||
| 13 | | 13 | ||
| 283.636 | | 283.636 | ||
| 13/11 | | 13/11 | ||
|vm3 | |||
|downminor 3rd | |||
|vF | |||
|- | |- | ||
| 14 | | 14 | ||
| 305.4545 | | 305.4545 | ||
| 6/5- | | 6/5- | ||
|m3 | |||
|minor 3rd | |||
|F | |||
|- | |- | ||
| 15 | | 15 | ||
| 327.273 | | 327.273 | ||
| 6/5+ | | 6/5+ | ||
|^m3 | |||
|upminor 3rd | |||
|^F | |||
|- | |- | ||
| 16 | | 16 | ||
| 349.091 | | 349.091 | ||
| 11/9, 27/22 | | 11/9, 27/22 | ||
|~3 | |||
|mid 3rd | |||
|^^F | |||
|- | |- | ||
| 17 | | 17 | ||
| 370.909 | | 370.909 | ||
| 16/13 | | 16/13 | ||
|vM3 | |||
|downmajor 3rd | |||
|vF# | |||
|- | |- | ||
| 18 | | 18 | ||
| 392.727 | | 392.727 | ||
| 5/4 | | 5/4 | ||
|M3 | |||
|major 3rd | |||
|F# | |||
|- | |- | ||
| 19 | | 19 | ||
| 414.5455 | | 414.5455 | ||
| 14/11 | | 14/11 | ||
|^M3 | |||
|upmajor 3rd | |||
|^F# | |||
|- | |- | ||
| 20 | | 20 | ||
| 436.364 | | 436.364 | ||
| 9/7 | | 9/7 | ||
|^^M3 | |||
|dupmajor 3rd | |||
|^^F# | |||
|- | |- | ||
| 21 | | 21 | ||
| 458.182 | | 458.182 | ||
| 13/10 | | 13/10 | ||
|vv4 | |||
|dud 4th | |||
|vvG | |||
|- | |- | ||
| 22 | | 22 | ||
| 480 | | 480 | ||
| 21/16 | | 21/16 | ||
|v4 | |||
|down 4th | |||
|vG | |||
|- | |- | ||
| 23 | | 23 | ||
| 501.818 | | 501.818 | ||
| 4/3, 27/20 | | 4/3, 27/20 | ||
|P4 | |||
|perfect 4th | |||
|G | |||
|- | |- | ||
| 24 | | 24 | ||
| 523.636 | | 523.636 | ||
| ''27/20'' | | ''27/20'' | ||
|^4 | |||
|up 4th | |||
|^G | |||
|- | |- | ||
| 25 | | 25 | ||
| 545.4545 | | 545.4545 | ||
| 11/8 | | 11/8 | ||
|~4 | |||
|mid 4th | |||
|^^G | |||
|- | |- | ||
| 26 | | 26 | ||
| 567.273 | | 567.273 | ||
| 18/13, 25/18 | | 18/13, 25/18 | ||
|vA4 | |||
|downaug 4th | |||
|vG# | |||
|- | |- | ||
| 27 | | 27 | ||
| 589.091 | | 589.091 | ||
| 7/5 | | 7/5 | ||
|A4, vd5 | |||
|aug 4th, downdim 5th | |||
|G#, vAb | |||
|- | |- | ||
| 28 | | 28 | ||
| 610.909 | | 610.909 | ||
| 10/7 | | 10/7 | ||
|^A4, d5 | |||
|upaug 4th, dim 5th | |||
|^G#, Ab | |||
|- | |- | ||
| 29 | | 29 | ||
| 632.727 | | 632.727 | ||
| 13/9, 36/25 | | 13/9, 36/25 | ||
|^d5 | |||
|updim 5th | |||
|^Ab | |||
|- | |- | ||
| 30 | | 30 | ||
| 654.5455 | | 654.5455 | ||
| 16/11 | | 16/11 | ||
|~5 | |||
|mid 5th | |||
|vvA | |||
|- | |- | ||
| 31 | | 31 | ||
| 676.364 | | 676.364 | ||
| ''40/27'' | | ''40/27'' | ||
|v5 | |||
|down 5th | |||
|vA | |||
|- | |- | ||
| 32 | | 32 | ||
| 698.182 | | 698.182 | ||
| 3/2, 40/27 | | 3/2, 40/27 | ||
|P5 | |||
|perfect 5th | |||
|A | |||
|- | |- | ||
| 33 | | 33 | ||
| 720 | | 720 | ||
| 32/21 | | 32/21 | ||
|^5 | |||
|up 5th | |||
|^A | |||
|- | |- | ||
| 34 | | 34 | ||
| 741.818 | | 741.818 | ||
| 20/13 | | 20/13 | ||
|^^5 | |||
|dup 5th | |||
|^^A | |||
|- | |- | ||
| 35 | | 35 | ||
| 763.636 | | 763.636 | ||
| 14/9 | | 14/9 | ||
|vvm6 | |||
|dudminor 6th | |||
|vvBb | |||
|- | |- | ||
| 36 | | 36 | ||
| 785.4545 | | 785.4545 | ||
| 11/7 | | 11/7 | ||
|vm6 | |||
|downminor 6th | |||
|vBb | |||
|- | |- | ||
| 37 | | 37 | ||
| 807.273 | | 807.273 | ||
| 8/5 | | 8/5 | ||
|m6 | |||
|minor 6th | |||
|Bb | |||
|- | |- | ||
| 38 | | 38 | ||
| 829.091 | | 829.091 | ||
| 13/8 | | 13/8 | ||
|^m6 | |||
|upminor 6th | |||
|^Bb | |||
|- | |- | ||
| 39 | | 39 | ||
| 850.909 | | 850.909 | ||
| 18/11, 44/27 | | 18/11, 44/27 | ||
|~6 | |||
|mid 6th | |||
|vvB | |||
|- | |- | ||
| 40 | | 40 | ||
| 872.727 | | 872.727 | ||
| 5/3- | | 5/3- | ||
|vM6 | |||
|downmajor 6th | |||
|vB | |||
|- | |- | ||
| 41 | | 41 | ||
| 894.5455 | | 894.5455 | ||
| 5/3+ | | 5/3+ | ||
|M6 | |||
|major 6th | |||
|B | |||
|- | |- | ||
| 42 | | 42 | ||
| 916.364 | | 916.364 | ||
| 22/13 | | 22/13 | ||
|^M6 | |||
|upmajor 6th | |||
|^B | |||
|- | |- | ||
| 43 | | 43 | ||
| 938.182 | | 938.182 | ||
| 12/7 | | 12/7 | ||
|^^M6 | |||
|dupmajor 6th | |||
|^^B | |||
|- | |- | ||
| 44 | | 44 | ||
| 960 | | 960 | ||
| 7/4, 26/15 | | 7/4, 26/15 | ||
|vvm7 | |||
|dudminor 7th | |||
|vvC | |||
|- | |- | ||
| 45 | | 45 | ||
| 981.818 | | 981.818 | ||
| 30/17 | | 30/17 | ||
|vm7 | |||
|downminor 7th | |||
|vC | |||
|- | |- | ||
| 46 | | 46 | ||
| 1003.636 | | 1003.636 | ||
| 16/9, 9/5 | | 16/9, 9/5 | ||
|m7 | |||
|minor 7th | |||
|C | |||
|- | |- | ||
| 47 | | 47 | ||
| 1025.4545 | | 1025.4545 | ||
| ''9/5'', 20/11 | | ''9/5'', 20/11 | ||
|^m7 | |||
|upminor 7th | |||
|^C | |||
|- | |- | ||
| 48 | | 48 | ||
| 1047.273 | | 1047.273 | ||
| 11/6, 24/13 | | 11/6, 24/13 | ||
|~7 | |||
|mid 7th | |||
|^^C | |||
|- | |- | ||
| 49 | | 49 | ||
| 1069.091 | | 1069.091 | ||
| ''24/13'', 13/7 | | ''24/13'', 13/7 | ||
|vM7 | |||
|downmajor 7th | |||
|vC# | |||
|- | |- | ||
| 50 | | 50 | ||
| 1090.909 | | 1090.909 | ||
| 15/8 | | 15/8 | ||
|M7 | |||
|major 7th | |||
|C# | |||
|- | |- | ||
| 51 | | 51 | ||
| 1112.727 | | 1112.727 | ||
| 40/21, 48/25 | | 40/21, 48/25 | ||
|^M7 | |||
|upmajor 7th | |||
|^C# | |||
|- | |- | ||
| 52 | | 52 | ||
| 1134.5455 | | 1134.5455 | ||
| 56/27, ''48/25'' | | 56/27, ''48/25'' | ||
|^^M7 | |||
|dupmajor 7th | |||
|^^C# | |||
|- | |- | ||
| 53 | | 53 | ||
| 1156.364 | | 1156.364 | ||
| 35/18 | | 35/18 | ||
|vv8 | |||
|dud 8ve | |||
|vvD | |||
|- | |- | ||
| 54 | | 54 | ||
| 1178.182 | | 1178.182 | ||
| 125/64, 63/32, 128/65, 77/39, 180/91, 196/99, ''160/81'' | | 125/64, 63/32, 128/65, 77/39, | ||
180/91, 196/99, ''160/81'' | |||
|v8 | |||
|down 8ve | |||
|vD | |||
|- | |- | ||
| 55 | | 55 | ||
| 1200 | | 1200 | ||
| 2/1 | | 2/1 | ||
|P8 | |||
|perfect 8ve | |||
|D | |||
|} | |} | ||
Revision as of 05:08, 13 September 2022
55edo divides the octave into 55 parts of 21.818 ¢. It can be used for a meantone tuning, and is close to 1/6 comma meantone (and is almost exactly 10/57 comma meantone.) Telemann suggested it as a theoretical basis for analyzing the intervals of meantone, in which he was followed by Leopold and Wolfgang Mozart. It can also be used for mohajira and liese temperaments.
Theory
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -3.77 | +6.41 | -8.83 | -7.55 | -5.86 | +10.38 | +2.64 | +4.14 | +7.94 | +9.22 | +4.45 |
Relative (%) | -17.3 | +29.4 | -40.5 | -34.6 | -26.9 | +47.6 | +12.1 | +19.0 | +36.4 | +42.3 | +20.4 | |
Steps (reduced) |
87 (32) |
128 (18) |
154 (44) |
174 (9) |
190 (25) |
204 (39) |
215 (50) |
225 (5) |
234 (14) |
242 (22) |
249 (29) |
5-limit commas: 81/80, [31 1 -14⟩, [27 5 -15⟩
7-limit commas: 31104/30625, 6144/6125, 81648/78125, 16128/15625, 28672/28125, 33075/32768, 83349/80000, 1029/1000, 686/675, 10976/10935, 16807/16384, 84035/82944
11-limit commas: 59049/58564, 74088/73205, 46656/46585, 21609/21296, 12005/11979, 19683/19360, 243/242, 3087/3025, 5488/5445, 19683/19250, 1944/1925, 45927/45056, 2835/2816, 35721/34375, 7056/6875, 12544/12375, 7203/7040, 2401/2376, 24057/24010, 72171/70000, 891/875, 176/175, 2079/2048, 385/384, 3234/3125, 17248/16875, 26411/25600, 26411/2592, 26411/262404, 88209/87808, 30976/30625, 3267/3200, 121/120, 81312/78125, 41503/40000, 41503/40500, 35937/35000, 2662/2625, 42592/42525, 83853/81920, 9317/9216, 65219/62500, 43923/43904, 14641/14400, 14641/14580
13-limit commas: 59535/57122, 29400/28561, 29568/28561, 29645/28561, 24576/24167, 99225/96668, 24500/24167, 50421/48334, 45927/43940, 2268/2197, 2240/2197, 57624/54925, 61875/61516, 57024/54925, 11264/10985, 72765/70304, 13475/13182, 22869/21970, 6776/6591, 20736/20449, 20480/20449, 84035/81796, 91125/91091, 65536/65065, 15309/14872, 1890/1859, 5600/5577, 9604/9295, 59049/57967, 58320/57967, 4374/4225, 864/845, 512/507, 11025/10816, 6125/6084, 21952/21125, 16807/16224, 84035/82134, 66825/66248, 90112/88725, 56133/54080, 693/676, 1540/1521, 26411/25350, 58806/57967, 58080/57967, 88209/84500, 4356/4225, 7744/7605, 88935/86528, 33275/33124, 27951/27040, 9317/9126, 58564/57967, 43923/42250, 17496/17303, 87808/86515, 55296/55055, 25515/25168, 1575/1573, 64827/62920, 4802/4719, 98415/98098, 59049/57200, 729/715, 144/143, 18375/18304, 18522/17875, 10976/10725, 84035/82368, 59049/56875, 11664/11375, 2304/2275, 4096/4095, 1701/1664, 105/104, 42336/40625, 25088/24375, 21609/20800, 2401/2340, 9604/9477, 72171/71344, 2673/2600, 66/65, 352/351, 13475/13312, 33957/32500, 15092/14625, 81675/81536, 58806/56875, 11616/11375, 61952/61425, 68607/66560, 847/832, 4235/4212, 35937/35672, 1331/1300, 5324/5265, 58564/56875, 85293/85184, 13377/13310, 85293/84700, 15288/15125, 31213/30976, 67392/67375, 28431/28160, 34944/34375, 4459/4400, 4459/4455, 28431/28000, 351/350, 79872/78125, 66339/65536, 51597/50000, 637/625, 10192/10125, 31213/30720, 31213/31104, 30888/30625, 1287/1280, 81081/78125, 16016/15625, 49049/48000, 49049/48600, 14157/14000, 33033/32768, 77077/75000, 51909/51200, 17303/17280, 75712/75625, 8281/8250, 41067/40960, 31941/31250, 9464/9375, 57967/57600, 91091/90000, 61347/61250, 79092/78125
Intervals
# | Cents | Approximate ratios | ups and downs notation | ||
---|---|---|---|---|---|
0 | 0.000 | 1/1 | P1 | perfect 1sn | D |
1 | 21.818 | 128/125, 64/63, 65/64, 78/77,
91/90, 99/98, 81/80 |
^1 | up 1sn | ^D |
2 | 43.636 | 36/35 | ^^1 | dup 1sn | ^^D |
3 | 65.4545 | 28/27, 25/24 | vvm2 | dudminor 2nd | vvEb |
4 | 87.273 | 25/24, 21/20 | vm2 | downminor 2nd | vEb |
5 | 109.091 | 16/15 | m2 | minor 2nd | Eb |
6 | 130.909 | 14/13, 13/12 | ^m2 | upminor 2nd | ^Eb |
7 | 152.727 | 13/12, 12/11 | ~2 | mid 2nd | vvE |
8 | 174.5455 | 11/10, 10/9 | vM2 | downmajor 2nd | vE |
9 | 196.364 | 9/8, 10/9 | M2 | major 2nd | E |
10 | 218.182 | 17/15 | ^M2 | upmajor 2nd | ^E |
11 | 240 | 8/7, 15/13 | ^^M2 | dupmajor 2nd | ^^E |
12 | 261.818 | 7/6 | vvm3 | dudminor 3rd | vvF |
13 | 283.636 | 13/11 | vm3 | downminor 3rd | vF |
14 | 305.4545 | 6/5- | m3 | minor 3rd | F |
15 | 327.273 | 6/5+ | ^m3 | upminor 3rd | ^F |
16 | 349.091 | 11/9, 27/22 | ~3 | mid 3rd | ^^F |
17 | 370.909 | 16/13 | vM3 | downmajor 3rd | vF# |
18 | 392.727 | 5/4 | M3 | major 3rd | F# |
19 | 414.5455 | 14/11 | ^M3 | upmajor 3rd | ^F# |
20 | 436.364 | 9/7 | ^^M3 | dupmajor 3rd | ^^F# |
21 | 458.182 | 13/10 | vv4 | dud 4th | vvG |
22 | 480 | 21/16 | v4 | down 4th | vG |
23 | 501.818 | 4/3, 27/20 | P4 | perfect 4th | G |
24 | 523.636 | 27/20 | ^4 | up 4th | ^G |
25 | 545.4545 | 11/8 | ~4 | mid 4th | ^^G |
26 | 567.273 | 18/13, 25/18 | vA4 | downaug 4th | vG# |
27 | 589.091 | 7/5 | A4, vd5 | aug 4th, downdim 5th | G#, vAb |
28 | 610.909 | 10/7 | ^A4, d5 | upaug 4th, dim 5th | ^G#, Ab |
29 | 632.727 | 13/9, 36/25 | ^d5 | updim 5th | ^Ab |
30 | 654.5455 | 16/11 | ~5 | mid 5th | vvA |
31 | 676.364 | 40/27 | v5 | down 5th | vA |
32 | 698.182 | 3/2, 40/27 | P5 | perfect 5th | A |
33 | 720 | 32/21 | ^5 | up 5th | ^A |
34 | 741.818 | 20/13 | ^^5 | dup 5th | ^^A |
35 | 763.636 | 14/9 | vvm6 | dudminor 6th | vvBb |
36 | 785.4545 | 11/7 | vm6 | downminor 6th | vBb |
37 | 807.273 | 8/5 | m6 | minor 6th | Bb |
38 | 829.091 | 13/8 | ^m6 | upminor 6th | ^Bb |
39 | 850.909 | 18/11, 44/27 | ~6 | mid 6th | vvB |
40 | 872.727 | 5/3- | vM6 | downmajor 6th | vB |
41 | 894.5455 | 5/3+ | M6 | major 6th | B |
42 | 916.364 | 22/13 | ^M6 | upmajor 6th | ^B |
43 | 938.182 | 12/7 | ^^M6 | dupmajor 6th | ^^B |
44 | 960 | 7/4, 26/15 | vvm7 | dudminor 7th | vvC |
45 | 981.818 | 30/17 | vm7 | downminor 7th | vC |
46 | 1003.636 | 16/9, 9/5 | m7 | minor 7th | C |
47 | 1025.4545 | 9/5, 20/11 | ^m7 | upminor 7th | ^C |
48 | 1047.273 | 11/6, 24/13 | ~7 | mid 7th | ^^C |
49 | 1069.091 | 24/13, 13/7 | vM7 | downmajor 7th | vC# |
50 | 1090.909 | 15/8 | M7 | major 7th | C# |
51 | 1112.727 | 40/21, 48/25 | ^M7 | upmajor 7th | ^C# |
52 | 1134.5455 | 56/27, 48/25 | ^^M7 | dupmajor 7th | ^^C# |
53 | 1156.364 | 35/18 | vv8 | dud 8ve | vvD |
54 | 1178.182 | 125/64, 63/32, 128/65, 77/39,
180/91, 196/99, 160/81 |
v8 | down 8ve | vD |
55 | 1200 | 2/1 | P8 | perfect 8ve | D |
Selected just intervals by error
The following table shows how 15-odd-limit just intervals are represented in 55edo (ordered by absolute error). The following tables show how 15-odd-limit intervals are represented in 55edo. Prime harmonics are in bold; inconsistent intervals are in italics.
Interval and complement | Error (abs, ¢) | Error (rel, %) |
---|---|---|
1/1, 2/1 | 0.000 | 0.0 |
9/7, 14/9 | 1.280 | 5.9 |
11/9, 18/11 | 1.683 | 7.7 |
11/6, 12/11 | 2.090 | 9.6 |
13/7, 14/13 | 2.611 | 12.0 |
15/8, 16/15 | 2.640 | 12.1 |
11/7, 14/11 | 2.963 | 13.6 |
3/2, 4/3 | 3.773 | 17.3 |
13/9, 18/13 | 3.890 | 17.8 |
13/10, 20/13 | 3.968 | 18.2 |
7/6, 12/7 | 5.053 | 23.2 |
13/11, 22/13 | 5.573 | 25.5 |
11/8, 16/11 | 5.863 | 26.9 |
5/4, 8/5 | 6.414 | 29.4 |
7/5, 10/7 | 6.579 | 30.2 |
9/8, 16/9 | 7.546 | 34.6 |
13/12, 24/13 | 7.664 | 35.1 |
15/13, 26/15 | 7.741 | 35.5 |
9/5, 10/9 | 7.858 | 36.0 |
15/11, 22/15 | 8.504 | 39.0 |
7/4, 8/7 | 8.826 | 40.5 |
11/10, 20/11 | 9.541 | 43.7 |
5/3, 6/5 | 10.187 | 46.7 |
15/14, 28/15 | 10.352 | 47.4 |
13/8, 16/13 | 10.381 | 47.6 |
Interval and complement | Error (abs, ¢) | Error (rel, %) |
---|---|---|
1/1, 2/1 | 0.000 | 0.0 |
9/7, 14/9 | 1.280 | 5.9 |
11/9, 18/11 | 1.683 | 7.7 |
11/6, 12/11 | 2.090 | 9.6 |
15/8, 16/15 | 2.640 | 12.1 |
11/7, 14/11 | 2.963 | 13.6 |
3/2, 4/3 | 3.773 | 17.3 |
13/10, 20/13 | 3.968 | 18.2 |
7/6, 12/7 | 5.053 | 23.2 |
11/8, 16/11 | 5.863 | 26.9 |
5/4, 8/5 | 6.414 | 29.4 |
9/8, 16/9 | 7.546 | 34.6 |
15/13, 26/15 | 7.741 | 35.5 |
15/11, 22/15 | 8.504 | 39.0 |
7/4, 8/7 | 8.826 | 40.5 |
5/3, 6/5 | 10.187 | 46.7 |
13/8, 16/13 | 10.381 | 47.6 |
15/14, 28/15 | 11.466 | 52.6 |
11/10, 20/11 | 12.277 | 56.3 |
9/5, 10/9 | 13.960 | 64.0 |
13/12, 24/13 | 14.155 | 64.9 |
7/5, 10/7 | 15.239 | 69.8 |
13/11, 22/13 | 16.245 | 74.5 |
13/9, 18/13 | 17.928 | 82.2 |
13/7, 14/13 | 19.207 | 88.0 |
Music
External links
- "Mozart's tuning: 55edo" (containing another listening example) in the Tonalsoft Encyclopedia