Amity family: Difference between revisions
No edit summary |
m Update keys |
||
Line 2: | Line 2: | ||
== Amity == | == Amity == | ||
{{ | {{Main| Amity }} | ||
{{ | {{See also| Ragismic microtemperaments #Amity }} | ||
Subgroup: 2.3.5 | [[Subgroup]]: 2.3.5 | ||
[[Comma list]]: 1600000/1594323 | [[Comma list]]: 1600000/1594323 | ||
Line 13: | Line 13: | ||
Mapping generators: ~2, ~243/200 | Mapping generators: ~2, ~243/200 | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~243/200 = 339.519 | ||
{{Val list|legend=1| 7, 39, 46, 53, 152, 205, 463, 668, 873 }} | {{Val list|legend=1| 7, 39, 46, 53, 152, 205, 463, 668, 873 }} | ||
Line 19: | Line 19: | ||
[[Badness]]: 0.021960 | [[Badness]]: 0.021960 | ||
=== | === Overview to extensions === | ||
The second comma to extend the 5-limit amity include 4375/4374 for amity, 225/224 for houborizic, 65625/65536 for paramity, 126/125 for accord, 245/243 for bamity, 2430/2401 for hamity, 1029/1024 for gamity, and 16875/16807 for familia. | The second comma to extend the 5-limit amity include 4375/4374 for amity, 225/224 for houborizic, 65625/65536 for paramity, 126/125 for accord, 245/243 for bamity, 2430/2401 for hamity, 1029/1024 for gamity, and 16875/16807 for familia. | ||
Temperaments discussed elsewhere include: | Temperaments discussed elsewhere include: | ||
* ''[[ | * ''[[Amicable]]'', {2401/2400, 1600000/1594323} → [[Breedsmic temperaments #Amicable]] | ||
* ''[[ | * ''[[Chromat]]'', {10976/10935, 235298/234375} → [[Hemimage temperaments #Chromat]] | ||
* ''[[ | * ''[[Witch]]'', {420175/419904, 1600000/1594323} → [[Wizmic microtemperaments #Witch]] | ||
== Septimal amity == | == Septimal amity == | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 4375/4374, 5120/5103 | [[Comma list]]: 4375/4374, 5120/5103 | ||
Line 36: | Line 36: | ||
{{Multival|legend=1| 5 13 -17 9 -41 -76 }} | {{Multival|legend=1| 5 13 -17 9 -41 -76 }} | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~128/105 = 339.432 | ||
{{Val list|legend=1| 7, 32c, 39, 46, 53, 99, 251, 350, 601cd, 951bcdd }} | {{Val list|legend=1| 7, 32c, 39, 46, 53, 99, 251, 350, 601cd, 951bcdd }} | ||
Line 49: | Line 49: | ||
Mapping: [{{val| 1 3 6 -2 21 }}, {{val| 0 -5 -13 17 -62 }}] | Mapping: [{{val| 1 3 6 -2 21 }}, {{val| 0 -5 -13 17 -62 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 339.464 | ||
Optimal GPV sequence: {{Val list| 46e, 53, 99e, 152, 555dee, 707ddee, 859bddee }} | Optimal GPV sequence: {{Val list| 46e, 53, 99e, 152, 555dee, 707ddee, 859bddee }} | ||
Line 62: | Line 62: | ||
Mapping: [{{val| 1 3 6 -2 21 17 }}, {{val| 0 -5 -13 17 -62 -47 }}] | Mapping: [{{val| 1 3 6 -2 21 17 }}, {{val| 0 -5 -13 17 -62 -47 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 339.481 | ||
Optimal GPV sequence: {{Val list| 46ef, 53, 99ef, 152f }} <nowiki>*</nowiki> | Optimal GPV sequence: {{Val list| 46ef, 53, 99ef, 152f }} <nowiki>*</nowiki> | ||
Line 77: | Line 77: | ||
Mapping: [{{val| 1 3 6 -2 6 }}, {{val| 0 -5 -13 17 -9 }}] | Mapping: [{{val| 1 3 6 -2 6 }}, {{val| 0 -5 -13 17 -9 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.390 | ||
Optimal GPV sequence: {{Val list| 7, 39, 46, 53, 99 }} | Optimal GPV sequence: {{Val list| 7, 39, 46, 53, 99 }} | ||
Line 90: | Line 90: | ||
Mapping: [{{val| 1 3 6 -2 6 2 }}, {{val| 0 -5 -13 17 -9 6 }}] | Mapping: [{{val| 1 3 6 -2 6 2 }}, {{val| 0 -5 -13 17 -9 6 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.419 | ||
Optimal GPV sequence: {{Val list| 7, 39, 46, 53, 99 }} | Optimal GPV sequence: {{Val list| 7, 39, 46, 53, 99 }} | ||
Line 103: | Line 103: | ||
Mapping: [{{val| 1 3 6 -2 6 2 -1 }}, {{val| 0 -5 -13 17 -9 6 18 }}] | Mapping: [{{val| 1 3 6 -2 6 2 -1 }}, {{val| 0 -5 -13 17 -9 6 18 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.366 | ||
Optimal GPV sequence: {{Val list| 7, 39, 46, 53, 99 }} | Optimal GPV sequence: {{Val list| 7, 39, 46, 53, 99 }} | ||
Line 116: | Line 116: | ||
Mapping: [{{val| 1 3 6 -2 6 2 -1 0 }}, {{val| 0 -5 -13 17 -9 6 18 15 }}] | Mapping: [{{val| 1 3 6 -2 6 2 -1 0 }}, {{val| 0 -5 -13 17 -9 6 18 15 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.407 | ||
Optimal GPV sequence: {{Val list| 7, 39h, 46, 53, 99h }} | Optimal GPV sequence: {{Val list| 7, 39h, 46, 53, 99h }} | ||
Line 123: | Line 123: | ||
=== Catamite === | === Catamite === | ||
The | The catamite temperament (46 & 99ef) tempers out 441/440 (werckisma) and 896/891 (pentacircle) in the 11-limit; 196/195, 352/351 and 364/363 in the 13-limit. The word "catamite" itself is a term for male homosexual, but also a play on the words "cata-" (down) and "amity." | ||
Subgroup: 2.3.5.7.11 | Subgroup: 2.3.5.7.11 | ||
Line 129: | Line 129: | ||
Comma list: 441/440, 896/891, 4375/4374 | Comma list: 441/440, 896/891, 4375/4374 | ||
Mapping: [{{val|1 3 6 -2 -7}}, {{val|0 -5 -13 17 37}}] | Mapping: [{{val| 1 3 6 -2 -7 }}, {{val| 0 -5 -13 17 37 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 339.340 | ||
Optimal GPV sequence: {{Val list| 46, 99e, 145, 244e }} | Optimal GPV sequence: {{Val list| 46, 99e, 145, 244e }} | ||
Line 142: | Line 142: | ||
Comma list: 196/195, 352/351, 364/363, 4375/4374 | Comma list: 196/195, 352/351, 364/363, 4375/4374 | ||
Mapping: [{{val|1 3 6 -2 -7 -11}}, {{val|0 -5 -13 17 37 52}}] | Mapping: [{{val| 1 3 6 -2 -7 -11 }}, {{val| 0 -5 -13 17 37 52 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 339.313 | ||
Optimal GPV sequence: {{Val list| 46, 99ef, 145 }} | Optimal GPV sequence: {{Val list| 46, 99ef, 145 }} | ||
Line 155: | Line 155: | ||
Comma list: 196/195, 256/255, 352/351, 364/363, 1156/1155 | Comma list: 196/195, 256/255, 352/351, 364/363, 1156/1155 | ||
Mapping: [{{val|1 3 6 -2 -7 -11 -1}}, {{val|0 -5 -13 17 37 52 18}}] | Mapping: [{{val| 1 3 6 -2 -7 -11 -1 }}, {{val| 0 -5 -13 17 37 52 18 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~17/14 = 339.313 | ||
Optimal GPV sequence: {{Val list| 46, 99ef, 145 }} | Optimal GPV sequence: {{Val list| 46, 99ef, 145 }} | ||
Line 168: | Line 168: | ||
Comma list: 196/195, 256/255, 343/342, 352/351, 364/363, 476/475 | Comma list: 196/195, 256/255, 343/342, 352/351, 364/363, 476/475 | ||
Mapping: [{{val|1 3 6 -2 -7 -11 -1 -13}}, {{val|0 -5 -13 17 37 52 18 61}}] | Mapping: [{{val| 1 3 6 -2 -7 -11 -1 -13 }}, {{val| 0 -5 -13 17 37 52 18 61 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~17/14 = 339.325 | ||
Optimal GPV sequence: {{Val list| 46, 99ef, 145 }} | Optimal GPV sequence: {{Val list| 46, 99ef, 145 }} | ||
Line 185: | Line 185: | ||
Mapping generators: ~99/70, ~64/55 | Mapping generators: ~99/70, ~64/55 | ||
POTE | Optimal tuning (POTE): ~99/70 = 1\2, ~64/55 = 260.561 | ||
Optimal GPV sequence: {{Val list| 14cde, 46, 106, 152, 350, 502d }} | Optimal GPV sequence: {{Val list| 14cde, 46, 106, 152, 350, 502d }} | ||
Line 198: | Line 198: | ||
Mapping: [{{val| 2 1 -1 13 13 20 }}, {{val| 0 5 13 -17 -14 -29 }}] | Mapping: [{{val| 2 1 -1 13 13 20 }}, {{val| 0 5 13 -17 -14 -29 }}] | ||
POTE | Optimal tuning (POTE): ~99/70 = 1\2, ~64/55 = 260.583 | ||
Optimal GPV sequence: {{Val list| 46, 106f, 152f, 198, 350f, 548cdff }} | Optimal GPV sequence: {{Val list| 46, 106f, 152f, 198, 350f, 548cdff }} | ||
Line 205: | Line 205: | ||
== Accord == | == Accord == | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 126/125, 100352/98415 | [[Comma list]]: 126/125, 100352/98415 | ||
Line 213: | Line 213: | ||
{{Multival|legend=1| 5 13 29 9 32 31 }} | {{Multival|legend=1| 5 13 29 9 32 31 }} | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~243/200 = 338.993 | ||
{{Val list|legend=1| 7d, 39d, 46, 131c, 177c }} | {{Val list|legend=1| 7d, 39d, 46, 131c, 177c }} | ||
Line 226: | Line 226: | ||
Mapping: [{{val| 1 3 6 11 6 }}, {{val| 0 -5 -13 -29 -9 }}] | Mapping: [{{val| 1 3 6 11 6 }}, {{val| 0 -5 -13 -29 -9 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.047 | ||
Optimal GPV sequence: {{Val list| 7d, 39d, 46, 177c, 223bc, 269bce }} | Optimal GPV sequence: {{Val list| 7d, 39d, 46, 177c, 223bc, 269bce }} | ||
Line 235: | Line 235: | ||
The ''houborizic'' temperament (53&113) tempers out the [[marvel comma]], 225/224. It is so named because it is closely related to the '''houboriz tuning''' (generator: 339.774971 cents). | The ''houborizic'' temperament (53&113) tempers out the [[marvel comma]], 225/224. It is so named because it is closely related to the '''houboriz tuning''' (generator: 339.774971 cents). | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 225/224, 1250000/1240029 | [[Comma list]]: 225/224, 1250000/1240029 | ||
Line 243: | Line 243: | ||
{{Multival|legend=1| 5 13 36 9 43 47 }} | {{Multival|legend=1| 5 13 36 9 43 47 }} | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~243/200 = 339.763 | ||
{{Val list|legend=1| 7d, 46d, 53, 113, 166 }} | {{Val list|legend=1| 7d, 46d, 53, 113, 166 }} | ||
Line 256: | Line 256: | ||
Mapping: [{{val| 1 3 6 13 -9 }}, {{val| 0 -5 -13 -36 44 }}] | Mapping: [{{val| 1 3 6 13 -9 }}, {{val| 0 -5 -13 -36 44 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.763 | ||
Optimal GPV sequence: {{Val list| 53, 113, 166 }} | Optimal GPV sequence: {{Val list| 53, 113, 166 }} | ||
Line 269: | Line 269: | ||
Mapping: [{{val| 1 3 6 13 -9 2 }}, {{val| 0 -5 -13 -36 44 6 }}] | Mapping: [{{val| 1 3 6 13 -9 2 }}, {{val| 0 -5 -13 -36 44 6 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~39/32 = 339.764 | ||
Optimal GPV sequence: {{Val list| 53, 113, 166 }} | Optimal GPV sequence: {{Val list| 53, 113, 166 }} | ||
Line 282: | Line 282: | ||
Mapping: [{{val| 1 3 6 13 6 }}, {{val| 0 -5 -13 -36 -9 }}] | Mapping: [{{val| 1 3 6 13 6 }}, {{val| 0 -5 -13 -36 -9 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.814 | ||
Optimal GPV sequence: {{Val list| 7d, 46d, 53, 60e, 113e }} | Optimal GPV sequence: {{Val list| 7d, 46d, 53, 60e, 113e }} | ||
Line 295: | Line 295: | ||
Mapping: [{{val| 1 3 6 13 6 2 }}, {{val| 0 -5 -13 -36 -9 6 }}] | Mapping: [{{val| 1 3 6 13 6 2 }}, {{val| 0 -5 -13 -36 -9 6 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.784 | ||
Optimal GPV sequence: {{Val list| 7d, 46d, 53, 60e, 113e }} | Optimal GPV sequence: {{Val list| 7d, 46d, 53, 60e, 113e }} | ||
Line 302: | Line 302: | ||
== Paramity == | == Paramity == | ||
The | The paramity temperament (53 & 311) tempers out the horwell comma (65625/65536) and [[garischisma]] (33554432/33480783). | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 65625/65536, 1600000/1594323 | [[Comma list]]: 65625/65536, 1600000/1594323 | ||
Line 310: | Line 310: | ||
[[Mapping]]: [{{val|1 3 6 -17}}, {{val|0 -5 -13 70}}] | [[Mapping]]: [{{val|1 3 6 -17}}, {{val|0 -5 -13 70}}] | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~243/200 = 339.553 | ||
{{Val list|legend=1| 53, 205d, 258, 311, 675, 986, 1297c, 2283bc }} | {{Val list|legend=1| 53, 205d, 258, 311, 675, 986, 1297c, 2283bc }} | ||
Line 321: | Line 321: | ||
Comma list: 6250/6237, 19712/19683, 41503/41472 | Comma list: 6250/6237, 19712/19683, 41503/41472 | ||
Mapping: [{{val|1 3 6 -17 36}}, {{val|0 -5 -13 70 -115}}] | Mapping: [{{val| 1 3 6 -17 36 }}, {{val| 0 -5 -13 70 -115 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.554 | ||
Optimal GPV sequence: {{Val list| 53, 205de, 258, 311, 675, 986 }} | Optimal GPV sequence: {{Val list| 53, 205de, 258, 311, 675, 986 }} | ||
Line 334: | Line 334: | ||
Comma list: 625/624, 2080/2079, 2200/2197, 19712/19683 | Comma list: 625/624, 2080/2079, 2200/2197, 19712/19683 | ||
Mapping: [{{val|1 3 6 -17 36 17}}, {{val|0 -5 -13 70 -115 -47}}] | Mapping: [{{val| 1 3 6 -17 36 17 }}, {{val| 0 -5 -13 70 -115 -47 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.554 | ||
Optimal GPV sequence: {{Val list| 53, 205de, 258, 311, 675, 986, 1661cf }} | Optimal GPV sequence: {{Val list| 53, 205de, 258, 311, 675, 986, 1661cf }} | ||
Line 347: | Line 347: | ||
Comma list: 625/624, 1225/1224, 2080/2079, 2200/2197, 2431/2430 | Comma list: 625/624, 1225/1224, 2080/2079, 2200/2197, 2431/2430 | ||
Mapping: [{{val|1 3 6 -17 36 17 -31}}, {{val|0 -5 -13 70 -115 -47 124}}] | Mapping: [{{val| 1 3 6 -17 36 17 -31 }}, {{val| 0 -5 -13 70 -115 -47 124 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.555 | ||
Optimal GPV sequence: {{Val list| 53, 205deg, 258g, 311, 675, 1661cf, 2336bccf, 3011bccf }} | Optimal GPV sequence: {{Val list| 53, 205deg, 258g, 311, 675, 1661cf, 2336bccf, 3011bccf }} | ||
Line 360: | Line 360: | ||
Comma list: 625/624, 1225/1224, 1540/1539, 1729/1728, 2080/2079, 2200/2197 | Comma list: 625/624, 1225/1224, 1540/1539, 1729/1728, 2080/2079, 2200/2197 | ||
Mapping: [{{val|1 3 6 -17 36 17 -31 15}}, {{val|0 -5 -13 70 -115 -47 124 -38}}] | Mapping: [{{val| 1 3 6 -17 36 17 -31 15 }}, {{val| 0 -5 -13 70 -115 -47 124 -38 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~208/171 = 339.555 | ||
Optimal GPV sequence: {{Val list| 53, 205deg, 258g, 311, 675, 986, 1661cfh }} | Optimal GPV sequence: {{Val list| 53, 205deg, 258g, 311, 675, 986, 1661cfh }} | ||
Line 369: | Line 369: | ||
== Bamity == | == Bamity == | ||
Bamity has a period of half octave and tempers out the sensamagic comma, [[245/243]]. The name | Bamity has a period of half octave and tempers out the sensamagic comma, [[245/243]]. The name ''bamity'' is a play on the words ''bi-'' and ''amity''. | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 245/243, 64827/64000 | [[Comma list]]: 245/243, 64827/64000 | ||
Line 381: | Line 381: | ||
{{Multival|legend=1| 10 26 12 18 -9 -45 }} | {{Multival|legend=1| 10 26 12 18 -9 -45 }} | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~7/6 = 260.402 | ||
{{Val list|legend=1| 14c, 32c, 46, 60, 106d }} | {{Val list|legend=1| 14c, 32c, 46, 60, 106d }} | ||
Line 418: | Line 418: | ||
== Hamity == | == Hamity == | ||
Hamity has a generator of about 430 cents which represents [[9/7]]. It is also generated by half of acute minor "tenth" (acute minor third of 243/200 plus an octave), and its name is a play on the words | Hamity has a generator of about 430 cents which represents [[9/7]]. It is also generated by half of acute minor "tenth" (acute minor third of 243/200 plus an octave), and its name is a play on the words ''half'' and ''amity''. | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 2430/2401, 4000/3969 | [[Comma list]]: 2430/2401, 4000/3969 | ||
Line 428: | Line 428: | ||
{{Multival|legend=1| 10 26 19 18 2 -29 }} | {{Multival|legend=1| 10 26 19 18 2 -29 }} | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~9/7 = 430.219 | ||
{{Val list|legend=1| 14c, 39d, 53 }} | {{Val list|legend=1| 14c, 39d, 53 }} | ||
Line 441: | Line 441: | ||
Mapping: [{{val| 1 -2 -7 -4 -3 }}, {{val| 0 10 26 19 18 }}] | Mapping: [{{val| 1 -2 -7 -4 -3 }}, {{val| 0 10 26 19 18 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 430.192 | ||
Optimal GPV sequence: {{Val list| 14c, 39d, 53 }} | Optimal GPV sequence: {{Val list| 14c, 39d, 53 }} | ||
Line 454: | Line 454: | ||
Mapping: [{{val| 1 -2 -7 -4 -3 -11 }}, {{val| 0 10 26 19 18 41 }}] | Mapping: [{{val| 1 -2 -7 -4 -3 -11 }}, {{val| 0 10 26 19 18 41 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 430.216 | ||
Optimal GPV sequence: {{Val list| 14cf, 39df, 53 }} | Optimal GPV sequence: {{Val list| 14cf, 39df, 53 }} | ||
Line 461: | Line 461: | ||
== Gamity == | == Gamity == | ||
The | The gamity temperament (46 & 113) tempers out the [[gamelisma]], 1029/1024. It splits the interval of grave major sixth (~400/243, an octave minus acute minor third) in three. | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 1029/1024, 1071875/1062882 | [[Comma list]]: 1029/1024, 1071875/1062882 | ||
Line 471: | Line 471: | ||
{{Multival|legend=1| 15 39 -5 27 -50 -121 }} | {{Multival|legend=1| 15 39 -5 27 -50 -121 }} | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~189/160 = 286.787 | ||
{{Val list|legend=1| 46, 113, 159 }} | {{Val list|legend=1| 46, 113, 159 }} | ||
Line 484: | Line 484: | ||
Mapping: [{{val| 1 -2 -7 4 8 }}, {{val| 0 15 39 -5 -19 }}] | Mapping: [{{val| 1 -2 -7 4 8 }}, {{val| 0 15 39 -5 -19 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~33/28 = 286.797 | ||
Optimal GPV sequence: {{Val list| 46, 113, 159 }} | Optimal GPV sequence: {{Val list| 46, 113, 159 }} | ||
Line 497: | Line 497: | ||
Mapping: [{{val| 1 -2 -7 4 8 8 }}, {{val| 0 15 39 -5 -19 -18 }}] | Mapping: [{{val| 1 -2 -7 4 8 8 }}, {{val| 0 15 39 -5 -19 -18 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~13/11 = 286.789 | ||
Optimal GPV sequence: {{Val list| 46, 113, 159 }} | Optimal GPV sequence: {{Val list| 46, 113, 159 }} | ||
Line 510: | Line 510: | ||
Mapping: [{{val| 1 -2 -7 4 8 8 6 }}, {{val| 0 15 39 -5 -19 -18 -8 }}] | Mapping: [{{val| 1 -2 -7 4 8 8 6 }}, {{val| 0 15 39 -5 -19 -18 -8 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~13/11 = 286.795 | ||
Optimal GPV sequence: {{Val list| 46, 113, 159 }} | Optimal GPV sequence: {{Val list| 46, 113, 159 }} | ||
Line 517: | Line 517: | ||
== Trinity == | == Trinity == | ||
The ''trinity'' temperament (152&159) tempers out the [[meter | The ''trinity'' temperament (152 & 159) tempers out the [[meter]], 703125/702464. It splits the interval of acute minor tenth (~243/100, an octave plus acute minor third) in three. It was so named for the following reason – 133\311 (133 steps of 311edo) is a possible generator, which is placed around 3\7 (1.1¢ flat), three of which makes acute minor third of ~243/200 with octave reduction. | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 703125/702464, 1600000/1594323 | [[Comma list]]: 703125/702464, 1600000/1594323 | ||
[[Mapping]]: [{{val|1 8 19 46}}, {{val|0 -15 -39 -101}}] | [[Mapping]]: [{{val| 1 8 19 46 }}, {{val| 0 -15 -39 -101 }}] | ||
{{Multival|legend=1| 15 39 101 27 118 125 }} | {{Multival|legend=1| 15 39 101 27 118 125 }} | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~168/125 = 513.178 | ||
{{Val list|legend=1| 152, 311, 463, 774 }} | {{Val list|legend=1| 152, 311, 463, 774 }} | ||
Line 538: | Line 538: | ||
Comma list: 3025/3024, 4000/3993, 19712/19683 | Comma list: 3025/3024, 4000/3993, 19712/19683 | ||
Mapping: [{{val|1 8 19 46 18}}, {{val|0 -15 -39 -101 -34}}] | Mapping: [{{val| 1 8 19 46 18 }}, {{val| 0 -15 -39 -101 -34 }}] | ||
POTE generator: ~121/90 = 513.177 | POTE generator: ~121/90 = 513.177 | ||
Line 551: | Line 551: | ||
Comma list: 625/624, 1575/1573, 2080/2079, 13720/13689 | Comma list: 625/624, 1575/1573, 2080/2079, 13720/13689 | ||
Mapping: [{{val|1 8 19 46 18 64}}, {{val|0 -15 -39 -101 -34 -141}}] | Mapping: [{{val| 1 8 19 46 18 64 }}, {{val| 0 -15 -39 -101 -34 -141 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.182 | ||
Optimal GPV sequence: {{Val list| 152f, 311 }} | Optimal GPV sequence: {{Val list| 152f, 311 }} | ||
Line 564: | Line 564: | ||
Comma list: 595/594, 625/624, 833/832, 1575/1573, 8624/8619 | Comma list: 595/594, 625/624, 833/832, 1575/1573, 8624/8619 | ||
Mapping: [{{val|1 8 19 46 18 64 -22}}, {{val|0 -15 -39 -101 -34 -141 61}}] | Mapping: [{{val| 1 8 19 46 18 64 -22 }}, {{val| 0 -15 -39 -101 -34 -141 61 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.186 | ||
Optimal GPV sequence: {{Val list| 152f, 159, 311, 1092cdg, 1403cdg, 1714cdeg }} | Optimal GPV sequence: {{Val list| 152f, 159, 311, 1092cdg, 1403cdg, 1714cdeg }} | ||
Line 577: | Line 577: | ||
Comma list: 595/594, 625/624, 833/832, 969/968, 1216/1215, 1575/1573 | Comma list: 595/594, 625/624, 833/832, 969/968, 1216/1215, 1575/1573 | ||
Mapping: [{{val|1 8 19 46 18 64 -22 53}}, {{val|0 -15 -39 -101 -34 -141 61 -114}}] | Mapping: [{{val| 1 8 19 46 18 64 -22 53 }}, {{val| 0 -15 -39 -101 -34 -141 61 -114 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.185 | ||
Optimal GPV sequence: {{Val list| 152f, 159, 311, 1403cdgh, 1714cdegh, 2025cdefgghh, 2336bccdefgghh }} | Optimal GPV sequence: {{Val list| 152f, 159, 311, 1403cdgh, 1714cdegh, 2025cdefgghh, 2336bccdefgghh }} | ||
Line 590: | Line 590: | ||
Comma list: 595/594, 625/624, 760/759, 833/832, 875/874, 969/968, 1105/1104 | Comma list: 595/594, 625/624, 760/759, 833/832, 875/874, 969/968, 1105/1104 | ||
Mapping: [{{val|1 8 19 46 18 64 -22 53 49}}, {{val|0 -15 -39 -101 -34 -141 61 -114 -104}}] | Mapping: [{{val| 1 8 19 46 18 64 -22 53 49 }}, {{val| 0 -15 -39 -101 -34 -141 61 -114 -104 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.185 | ||
Optimal GPV sequence: {{Val list| 152f, 159, 311, 1092cdgh, 1403cdgh, 1714cdeghi }} | Optimal GPV sequence: {{Val list| 152f, 159, 311, 1092cdgh, 1403cdgh, 1714cdeghi }} | ||
Line 603: | Line 603: | ||
Comma list: 595/594, 625/624, 760/759, 784/783, 833/832, 875/874, 969/968, 1045/1044 | Comma list: 595/594, 625/624, 760/759, 784/783, 833/832, 875/874, 969/968, 1045/1044 | ||
Mapping: [{{val|1 8 19 46 18 64 -22 53 49 72}}, {{val|0 -15 -39 -101 -34 -141 61 -114 -104 -157}}] | Mapping: [{{val| 1 8 19 46 18 64 -22 53 49 72 }}, {{val| 0 -15 -39 -101 -34 -141 61 -114 -104 -157 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.186 | ||
Optimal GPV sequence: {{Val list| 152fj, 159, 311, 781dh, 1092cdgh, 1403cdgh }} | Optimal GPV sequence: {{Val list| 152fj, 159, 311, 781dh, 1092cdgh, 1403cdgh }} | ||
Line 612: | Line 612: | ||
== Familia == | == Familia == | ||
The | The familia temperament (113 & 152) tempers out the mirkwai comma, 16875/16807. It splits the interval of acute minor tenth (~243/100) in five. | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 16875/16807, 1600000/1594323 | [[Comma list]]: 16875/16807, 1600000/1594323 | ||
Line 622: | Line 622: | ||
{{Multival|legend=1| 25 65 67 45 36 -27 }} | {{Multival|legend=1| 25 65 67 45 36 -27 }} | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~11907/10000 = 307.941 | ||
{{Val list|legend=1| 39d, 74cd, 113, 152, 265, 417, 986d }} | {{Val list|legend=1| 39d, 74cd, 113, 152, 265, 417, 986d }} | ||
Line 635: | Line 635: | ||
Mapping: [{{val| 1 8 19 20 5 }}, {{val| 0 -25 -65 -67 -6 }}] | Mapping: [{{val| 1 8 19 20 5 }}, {{val| 0 -25 -65 -67 -6 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~3200/2673 = 307.906 | ||
Optimal GPV sequence: {{Val list| 39d, 74cd, 113, 152, 417, 569de, 721de }} | Optimal GPV sequence: {{Val list| 39d, 74cd, 113, 152, 417, 569de, 721de }} | ||
Line 648: | Line 648: | ||
Mapping: [{{val| 1 8 19 20 5 25 }}, {{val| 0 -25 -65 -67 -6 -83 }}] | Mapping: [{{val| 1 8 19 20 5 25 }}, {{val| 0 -25 -65 -67 -6 -83 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~143/120 = 307.913 | ||
Optimal GPV sequence: {{Val list| 39df, 74cdf, 113, 152f, 265, 417f }} | Optimal GPV sequence: {{Val list| 39df, 74cdf, 113, 152f, 265, 417f }} |
Revision as of 12:30, 24 January 2023
The amity family tempers out the 5-limit amity comma, 1600000/1594323. The generator for the amity temperament is the acute minor third, which means the 6/5 just minor third raised by an 81/80 comma to 243/200, and from this it derives its name. It can also be described as the 46&53 temperament, which tempers out 4375/4374 and 5120/5103 in the 7-limit. 99EDO is a good tuning for amity, with generator 28\99, and MOS of 11, 18, 25, 32, 39, 46 or 53 notes are available. If you are looking for a different kind of neutral third this could be the temperament for you.
Amity
Subgroup: 2.3.5
Comma list: 1600000/1594323
Mapping: [⟨1 3 6], ⟨0 -5 -13]]
Mapping generators: ~2, ~243/200
Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.519
Badness: 0.021960
Overview to extensions
The second comma to extend the 5-limit amity include 4375/4374 for amity, 225/224 for houborizic, 65625/65536 for paramity, 126/125 for accord, 245/243 for bamity, 2430/2401 for hamity, 1029/1024 for gamity, and 16875/16807 for familia.
Temperaments discussed elsewhere include:
- Amicable, {2401/2400, 1600000/1594323} → Breedsmic temperaments #Amicable
- Chromat, {10976/10935, 235298/234375} → Hemimage temperaments #Chromat
- Witch, {420175/419904, 1600000/1594323} → Wizmic microtemperaments #Witch
Septimal amity
Subgroup: 2.3.5.7
Comma list: 4375/4374, 5120/5103
Mapping: [⟨1 3 6 -2], ⟨0 -5 -13 17]]
Wedgie: ⟨⟨ 5 13 -17 9 -41 -76 ]]
Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 339.432
Badness: 0.023649
11-limit
Subgroup: 2.3.5.7.11
Comma list: 540/539, 4375/4374, 5120/5103
Mapping: [⟨1 3 6 -2 21], ⟨0 -5 -13 17 -62]]
Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 339.464
Optimal GPV sequence: Template:Val list
Badness: 0.031506
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 352/351, 540/539, 625/624, 847/845
Mapping: [⟨1 3 6 -2 21 17], ⟨0 -5 -13 17 -62 -47]]
Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 339.481
Optimal GPV sequence: Template:Val list *
* optimal patent val: 205
Badness: 0.028008
Hitchcock
Subgroup: 2.3.5.7.11
Comma list: 121/120, 176/175, 2200/2187
Mapping: [⟨1 3 6 -2 6], ⟨0 -5 -13 17 -9]]
Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.390
Optimal GPV sequence: Template:Val list
Badness: 0.035187
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 121/120, 169/168, 176/175, 325/324
Mapping: [⟨1 3 6 -2 6 2], ⟨0 -5 -13 17 -9 6]]
Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.419
Optimal GPV sequence: Template:Val list
Badness: 0.022448
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 121/120, 154/153, 169/168, 176/175, 273/272
Mapping: [⟨1 3 6 -2 6 2 -1], ⟨0 -5 -13 17 -9 6 18]]
Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.366
Optimal GPV sequence: Template:Val list
Badness: 0.019395
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 121/120, 154/153, 169/168, 171/170, 176/175, 190/189
Mapping: [⟨1 3 6 -2 6 2 -1 0], ⟨0 -5 -13 17 -9 6 18 15]]
Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.407
Optimal GPV sequence: Template:Val list
Badness: 0.017513
Catamite
The catamite temperament (46 & 99ef) tempers out 441/440 (werckisma) and 896/891 (pentacircle) in the 11-limit; 196/195, 352/351 and 364/363 in the 13-limit. The word "catamite" itself is a term for male homosexual, but also a play on the words "cata-" (down) and "amity."
Subgroup: 2.3.5.7.11
Comma list: 441/440, 896/891, 4375/4374
Mapping: [⟨1 3 6 -2 -7], ⟨0 -5 -13 17 37]]
Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 339.340
Optimal GPV sequence: Template:Val list
Badness: 0.040976
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 196/195, 352/351, 364/363, 4375/4374
Mapping: [⟨1 3 6 -2 -7 -11], ⟨0 -5 -13 17 37 52]]
Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 339.313
Optimal GPV sequence: Template:Val list
Badness: 0.034215
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 196/195, 256/255, 352/351, 364/363, 1156/1155
Mapping: [⟨1 3 6 -2 -7 -11 -1], ⟨0 -5 -13 17 37 52 18]]
Optimal tuning (POTE): ~2 = 1\1, ~17/14 = 339.313
Optimal GPV sequence: Template:Val list
Badness: 0.021193
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 196/195, 256/255, 343/342, 352/351, 364/363, 476/475
Mapping: [⟨1 3 6 -2 -7 -11 -1 -13], ⟨0 -5 -13 17 37 52 18 61]]
Optimal tuning (POTE): ~2 = 1\1, ~17/14 = 339.325
Optimal GPV sequence: Template:Val list
Badness: 0.018864
Hemiamity
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 4375/4374, 5120/5103
Mapping: [⟨2 1 -1 13 13], ⟨0 5 13 -17 -14]]
Mapping generators: ~99/70, ~64/55
Optimal tuning (POTE): ~99/70 = 1\2, ~64/55 = 260.561
Optimal GPV sequence: Template:Val list
Badness: 0.031307
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 352/351, 847/845, 1716/1715, 3025/3024
Mapping: [⟨2 1 -1 13 13 20], ⟨0 5 13 -17 -14 -29]]
Optimal tuning (POTE): ~99/70 = 1\2, ~64/55 = 260.583
Optimal GPV sequence: Template:Val list
Badness: 0.025784
Accord
Subgroup: 2.3.5.7
Comma list: 126/125, 100352/98415
Mapping: [⟨1 3 6 11], ⟨0 -5 -13 -29]]
Wedgie: ⟨⟨ 5 13 29 9 32 31 ]]
Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 338.993
Badness: 0.095612
11-limit
Subgroup: 2.3.5.7.11
Comma list: 121/120, 126/125, 896/891
Mapping: [⟨1 3 6 11 6], ⟨0 -5 -13 -29 -9]]
Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.047
Optimal GPV sequence: Template:Val list
Badness: 0.042468
Houborizic
The houborizic temperament (53&113) tempers out the marvel comma, 225/224. It is so named because it is closely related to the houboriz tuning (generator: 339.774971 cents).
Subgroup: 2.3.5.7
Comma list: 225/224, 1250000/1240029
Mapping: [⟨1 3 6 13], ⟨0 -5 -13 -36]]
Wedgie: ⟨⟨ 5 13 36 9 43 47 ]]
Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.763
Badness: 0.066638
11-limit
Subgroup: 2.3.5.7.11
Comma list: 225/224, 385/384, 1250000/1240029
Mapping: [⟨1 3 6 13 -9], ⟨0 -5 -13 -36 44]]
Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.763
Optimal GPV sequence: Template:Val list
Badness: 0.067891
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 225/224, 325/324, 385/384, 2200/2197
Mapping: [⟨1 3 6 13 -9 2], ⟨0 -5 -13 -36 44 6]]
Optimal tuning (POTE): ~2 = 1\1, ~39/32 = 339.764
Optimal GPV sequence: Template:Val list
Badness: 0.032996
Houbor
Subgroup: 2.3.5.7.11
Comma list: 121/120, 225/224, 2200/2187
Mapping: [⟨1 3 6 13 6], ⟨0 -5 -13 -36 -9]]
Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.814
Optimal GPV sequence: Template:Val list
Badness: 0.045232
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 121/120, 225/224, 275/273, 325/324
Mapping: [⟨1 3 6 13 6 2], ⟨0 -5 -13 -36 -9 6]]
Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 339.784
Optimal GPV sequence: Template:Val list
Badness: 0.031331
Paramity
The paramity temperament (53 & 311) tempers out the horwell comma (65625/65536) and garischisma (33554432/33480783).
Subgroup: 2.3.5.7
Comma list: 65625/65536, 1600000/1594323
Mapping: [⟨1 3 6 -17], ⟨0 -5 -13 70]]
Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.553
Badness: 0.113655
11-limit
Subgroup: 2.3.5.7.11
Comma list: 6250/6237, 19712/19683, 41503/41472
Mapping: [⟨1 3 6 -17 36], ⟨0 -5 -13 70 -115]]
Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.554
Optimal GPV sequence: Template:Val list
Badness: 0.064853
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 625/624, 2080/2079, 2200/2197, 19712/19683
Mapping: [⟨1 3 6 -17 36 17], ⟨0 -5 -13 70 -115 -47]]
Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.554
Optimal GPV sequence: Template:Val list
Badness: 0.030347
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 625/624, 1225/1224, 2080/2079, 2200/2197, 2431/2430
Mapping: [⟨1 3 6 -17 36 17 -31], ⟨0 -5 -13 70 -115 -47 124]]
Optimal tuning (POTE): ~2 = 1\1, ~243/200 = 339.555
Optimal GPV sequence: Template:Val list
Badness: 0.024118
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 625/624, 1225/1224, 1540/1539, 1729/1728, 2080/2079, 2200/2197
Mapping: [⟨1 3 6 -17 36 17 -31 15], ⟨0 -5 -13 70 -115 -47 124 -38]]
Optimal tuning (POTE): ~2 = 1\1, ~208/171 = 339.555
Optimal GPV sequence: Template:Val list
Badness: 0.017420
Bamity
Bamity has a period of half octave and tempers out the sensamagic comma, 245/243. The name bamity is a play on the words bi- and amity.
Subgroup: 2.3.5.7
Comma list: 245/243, 64827/64000
Mapping: [⟨2 1 -1 3], ⟨0 5 13 6]]
Mapping generators: ~343/240, ~7/6
Wedgie: ⟨⟨ 10 26 12 18 -9 -45 ]]
Optimal tuning (POTE): ~2 = 1\1, ~7/6 = 260.402
Badness: 0.083601
11-limit
Subgroup: 2.3.5.7.11
Comma list: 121/120, 245/243, 441/440
Mapping: [⟨2 1 -1 3 3], ⟨0 5 13 6 9]]
Mapping generators: ~99/70, ~7/6
POTE generator: ~7/6 = 260.393
Optimal GPV sequence: Template:Val list
Badness: 0.035504
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 91/90, 121/120, 245/243, 441/440
Mapping: [⟨2 1 -1 3 3 0], ⟨0 5 13 6 9 17]]
Mapping generators: ~55/39, ~7/6
POTE generator: ~7/6 = 260.618
Optimal GPV sequence: Template:Val list
Badness: 0.030885
Hamity
Hamity has a generator of about 430 cents which represents 9/7. It is also generated by half of acute minor "tenth" (acute minor third of 243/200 plus an octave), and its name is a play on the words half and amity.
Subgroup: 2.3.5.7
Comma list: 2430/2401, 4000/3969
Mapping: [⟨1 -2 -7 -4], ⟨0 10 26 19]]
Wedgie: ⟨⟨ 10 26 19 18 2 -29 ]]
Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 430.219
Badness: 0.073956
11-limit
Subgroup: 2.3.5.7.11
Comma list: 99/98, 121/120, 2200/2187
Mapping: [⟨1 -2 -7 -4 -3], ⟨0 10 26 19 18]]
Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 430.192
Optimal GPV sequence: Template:Val list
Badness: 0.042947
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 99/98, 121/120, 275/273, 572/567
Mapping: [⟨1 -2 -7 -4 -3 -11], ⟨0 10 26 19 18 41]]
Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 430.216
Optimal GPV sequence: Template:Val list
Badness: 0.029753
Gamity
The gamity temperament (46 & 113) tempers out the gamelisma, 1029/1024. It splits the interval of grave major sixth (~400/243, an octave minus acute minor third) in three.
Subgroup: 2.3.5.7
Comma list: 1029/1024, 1071875/1062882
Mapping: [⟨1 -2 -7 4], ⟨0 15 39 -5]]
Wedgie: ⟨⟨ 15 39 -5 27 -50 -121 ]]
Optimal tuning (POTE): ~2 = 1\1, ~189/160 = 286.787
Badness: 0.125733
11-limit
Subgroup: 2.3.5.7.11
Comma list: 385/384, 441/440, 1071875/1062882
Mapping: [⟨1 -2 -7 4 8], ⟨0 15 39 -5 -19]]
Optimal tuning (POTE): ~2 = 1\1, ~33/28 = 286.797
Optimal GPV sequence: Template:Val list
Badness: 0.051111
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 325/324, 364/363, 385/384, 10985/10976
Mapping: [⟨1 -2 -7 4 8 8], ⟨0 15 39 -5 -19 -18]]
Optimal tuning (POTE): ~2 = 1\1, ~13/11 = 286.789
Optimal GPV sequence: Template:Val list
Badness: 0.030297
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 273/272, 325/324, 364/363, 385/384, 3773/3757
Mapping: [⟨1 -2 -7 4 8 8 6], ⟨0 15 39 -5 -19 -18 -8]]
Optimal tuning (POTE): ~2 = 1\1, ~13/11 = 286.795
Optimal GPV sequence: Template:Val list
Badness: 0.022036
Trinity
The trinity temperament (152 & 159) tempers out the meter, 703125/702464. It splits the interval of acute minor tenth (~243/100, an octave plus acute minor third) in three. It was so named for the following reason – 133\311 (133 steps of 311edo) is a possible generator, which is placed around 3\7 (1.1¢ flat), three of which makes acute minor third of ~243/200 with octave reduction.
Subgroup: 2.3.5.7
Comma list: 703125/702464, 1600000/1594323
Mapping: [⟨1 8 19 46], ⟨0 -15 -39 -101]]
Wedgie: ⟨⟨ 15 39 101 27 118 125 ]]
Optimal tuning (POTE): ~2 = 1\1, ~168/125 = 513.178
Badness: 0.119453
11-limit
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 4000/3993, 19712/19683
Mapping: [⟨1 8 19 46 18], ⟨0 -15 -39 -101 -34]]
POTE generator: ~121/90 = 513.177
Optimal GPV sequence: Template:Val list
Badness: 0.031296
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 625/624, 1575/1573, 2080/2079, 13720/13689
Mapping: [⟨1 8 19 46 18 64], ⟨0 -15 -39 -101 -34 -141]]
Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.182
Optimal GPV sequence: Template:Val list
Badness: 0.026418
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 595/594, 625/624, 833/832, 1575/1573, 8624/8619
Mapping: [⟨1 8 19 46 18 64 -22], ⟨0 -15 -39 -101 -34 -141 61]]
Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.186
Optimal GPV sequence: Template:Val list
Badness: 0.025588
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 595/594, 625/624, 833/832, 969/968, 1216/1215, 1575/1573
Mapping: [⟨1 8 19 46 18 64 -22 53], ⟨0 -15 -39 -101 -34 -141 61 -114]]
Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.185
Optimal GPV sequence: Template:Val list
Badness: 0.018412
23-limit
Subgroup: 2.3.5.7.11.13.17.19.23
Comma list: 595/594, 625/624, 760/759, 833/832, 875/874, 969/968, 1105/1104
Mapping: [⟨1 8 19 46 18 64 -22 53 49], ⟨0 -15 -39 -101 -34 -141 61 -114 -104]]
Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.185
Optimal GPV sequence: Template:Val list
Badness: 0.014343
29-limit
Subgroup: 2.3.5.7.11.13.17.19.23.29
Comma list: 595/594, 625/624, 760/759, 784/783, 833/832, 875/874, 969/968, 1045/1044
Mapping: [⟨1 8 19 46 18 64 -22 53 49 72], ⟨0 -15 -39 -101 -34 -141 61 -114 -104 -157]]
Optimal tuning (POTE): ~2 = 1\1, ~35/26 = 513.186
Optimal GPV sequence: Template:Val list
Badness: 0.012038
Familia
The familia temperament (113 & 152) tempers out the mirkwai comma, 16875/16807. It splits the interval of acute minor tenth (~243/100) in five.
Subgroup: 2.3.5.7
Comma list: 16875/16807, 1600000/1594323
Mapping: [⟨1 8 19 20], ⟨0 -25 -65 -67]]
Wedgie: ⟨⟨ 25 65 67 45 36 -27 ]]
Optimal tuning (POTE): ~2 = 1\1, ~11907/10000 = 307.941
Badness: 0.144551
11-limit
Subgroup: 2.3.5.7.11
Comma list: 540/539, 1375/1372, 1600000/1594323
Mapping: [⟨1 8 19 20 5], ⟨0 -25 -65 -67 -6]]
Optimal tuning (POTE): ~2 = 1\1, ~3200/2673 = 307.906
Optimal GPV sequence: Template:Val list
Badness: 0.051740
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 540/539, 729/728, 1375/1372, 2205/2197
Mapping: [⟨1 8 19 20 5 25], ⟨0 -25 -65 -67 -6 -83]]
Optimal tuning (POTE): ~2 = 1\1, ~143/120 = 307.913
Optimal GPV sequence: Template:Val list
Badness: 0.038473