255edo: Difference between revisions
Jump to navigation
Jump to search
Cleanup and +prime error table |
+infobox, improve intro, +RTT table and rank-2 temperaments |
||
Line 1: | Line 1: | ||
{{Infobox ET | |||
| Prime factorization = 3 × 5 × 17 | |||
| Step size = 4.70589¢ | |||
| Fifth = 149\255 (701.18¢) | |||
| Semitones = 23:20 (108.24¢ : 94.12¢) | |||
| Consistency = 11 | |||
}} | |||
{{EDO intro|255}} | |||
== Theory == | |||
255et tempers out the [[parakleisma]], {{monzo| 8 14 -13 }}, and the [[septendecima]], {{monzo| -52 -17 34 }}, in the 5-limit. In the 7-limit it tempers out [[cataharry]], 19683/19600, [[mirkwai]], 16875/16807 and [[horwell]], 65625/65536, so that it [[support]]s the [[mirkat]] temperament, and in fact provides the [[optimal patent val]]. It also gives the optimal patent val for mirkat in the 11-limit, tempering out [[540/539]], 1375/1372, [[3025/3024]] and [[8019/8000]]. In the 13-limit it tempers out [[847/845]], [[625/624]], [[1575/1573]] and [[1716/1715]]. | |||
=== Prime harmonics === | === Prime harmonics === | ||
{{Harmonics in equal|255}} | {{Harmonics in equal|255}} | ||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | |||
! rowspan="2" | Subgroup | |||
! rowspan="2" | [[Comma list]] | |||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal 8ve <br>stretch (¢) | |||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.3 | |||
| {{monzo| -404 255 }} | |||
| [{{val| 255 404 }}] | |||
| +0.246 | |||
| 0.246 | |||
| 5.22 | |||
|- | |||
| 2.3.5 | |||
| {{monzo| 8 14 -13 }}, {{monzo| -36 11 8 }} | |||
| [{{val| 255 404 592 }}] | |||
| +0.226 | |||
| 0.203 | |||
| 4.30 | |||
|- | |||
| 2.3.5.7 | |||
| 1687/16807, 19683/19600, 65625/65536 | |||
| [{{val| 255 404 592 716 }}] | |||
| +0.117 | |||
| 0.257 | |||
| 5.46 | |||
|- | |||
| 2.3.5.7.11 | |||
| 540/539, 1375/1372, 8019/8000, 65625/65536 | |||
| [{{val| 255 404 592 716 882 }}] | |||
| +0.136 | |||
| 0.233 | |||
| 4.95 | |||
|} | |||
=== Rank-2 temperaments === | |||
{| class="wikitable center-all left-5" | |||
|+Table of rank-2 temperaments by generator | |||
! Periods<br>per octave | |||
! Generator<br>(reduced) | |||
! Cents<br>(reduced) | |||
! Associated<br>ratio | |||
! Temperaments | |||
|- | |||
| 1 | |||
| 39\255 | |||
| 183.53 | |||
| 10/9 | |||
| [[Mirkat]] (255f) | |||
|- | |||
| 1 | |||
| 52\255 | |||
| 244.71 | |||
| 15/13 | |||
| [[Subsemifourth]] (255) | |||
|- | |||
| 1 | |||
| 67\255 | |||
| 315.29 | |||
| 6/5 | |||
| [[Parakleismic]] (5-limit) | |||
|- | |||
| 1 | |||
| 74\255 | |||
| 348.24 | |||
| 11/9 | |||
| [[Eris]] (255) | |||
|- | |||
| 3 | |||
| 82\255<br>(3\255) | |||
| 385.88<br>(14.12) | |||
| 5/4<br>(126/125) | |||
| [[Mutt]] (7-limit) | |||
|- | |||
| 5 | |||
| 106\255<br>(4\255) | |||
| 498.82<br>(18.82) | |||
| 4/3<br>(81/80) | |||
| [[Pental]] (5-limit) | |||
|- | |||
| 17 | |||
| 53\255<br>(7\255) | |||
| 249.41<br>(32.94) | |||
| {{monzo| -25 -9 17 }}<br>(1990656/1953125) | |||
| [[Chlorine]] (5-limit) | |||
|} | |||
[[Category:Equal divisions of the octave]] | [[Category:Equal divisions of the octave]] | ||
[[Category:Mirkat]] | [[Category:Mirkat]] |
Revision as of 20:36, 2 April 2022
← 254edo | 255edo | 256edo → |
Theory
255et tempers out the parakleisma, [8 14 -13⟩, and the septendecima, [-52 -17 34⟩, in the 5-limit. In the 7-limit it tempers out cataharry, 19683/19600, mirkwai, 16875/16807 and horwell, 65625/65536, so that it supports the mirkat temperament, and in fact provides the optimal patent val. It also gives the optimal patent val for mirkat in the 11-limit, tempering out 540/539, 1375/1372, 3025/3024 and 8019/8000. In the 13-limit it tempers out 847/845, 625/624, 1575/1573 and 1716/1715.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -0.78 | -0.43 | +0.59 | -0.73 | +1.83 | -1.43 | -1.04 | +2.31 | +1.01 | -1.51 |
Relative (%) | +0.0 | -16.5 | -9.2 | +12.4 | -15.5 | +38.8 | -30.3 | -22.2 | +49.2 | +21.5 | -32.0 | |
Steps (reduced) |
255 (0) |
404 (149) |
592 (82) |
716 (206) |
882 (117) |
944 (179) |
1042 (22) |
1083 (63) |
1154 (134) |
1239 (219) |
1263 (243) |
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-404 255⟩ | [⟨255 404]] | +0.246 | 0.246 | 5.22 |
2.3.5 | [8 14 -13⟩, [-36 11 8⟩ | [⟨255 404 592]] | +0.226 | 0.203 | 4.30 |
2.3.5.7 | 1687/16807, 19683/19600, 65625/65536 | [⟨255 404 592 716]] | +0.117 | 0.257 | 5.46 |
2.3.5.7.11 | 540/539, 1375/1372, 8019/8000, 65625/65536 | [⟨255 404 592 716 882]] | +0.136 | 0.233 | 4.95 |
Rank-2 temperaments
Periods per octave |
Generator (reduced) |
Cents (reduced) |
Associated ratio |
Temperaments |
---|---|---|---|---|
1 | 39\255 | 183.53 | 10/9 | Mirkat (255f) |
1 | 52\255 | 244.71 | 15/13 | Subsemifourth (255) |
1 | 67\255 | 315.29 | 6/5 | Parakleismic (5-limit) |
1 | 74\255 | 348.24 | 11/9 | Eris (255) |
3 | 82\255 (3\255) |
385.88 (14.12) |
5/4 (126/125) |
Mutt (7-limit) |
5 | 106\255 (4\255) |
498.82 (18.82) |
4/3 (81/80) |
Pental (5-limit) |
17 | 53\255 (7\255) |
249.41 (32.94) |
[-25 -9 17⟩ (1990656/1953125) |
Chlorine (5-limit) |