Porcupine family: Difference between revisions
No edit summary |
mNo edit summary |
||
Line 48: | Line 48: | ||
[[Minimax tuning]]: | [[Minimax tuning]]: | ||
* [[7-odd-limit| | * [[7-odd-limit]]: ~10/9 = {{monzo| 3/5 0 -1/5 }} | ||
: Eigenmonzos: 2, 5/4 | |||
* [[9-odd-limit]]: ~10/9 = {{monzo| 1/6 -1/6 0 1/12 }} | |||
: Eigenmonzos: 2, 9/7 | |||
[[Tuning ranges]]: | [[Tuning ranges]]: | ||
* [[Diamond monotone]] range: [160.000, 163.636] (2\15 to 3\22) | * [[Diamond monotone]] range: ~10/9 = [160.000, 163.636] (2\15 to 3\22) | ||
* [[ | * 7-odd-limit [[diamond tradeoff]]: ~10/9 = [157.821, 166.015] | ||
* Diamond monotone and tradeoff: [160.000, 163.636] | * 9-odd-limit diamond tradeoff: ~10/9 = [157.821, 182.404] | ||
* Diamond monotone and tradeoff: ~10/9 = [160.000, 163.636] | |||
{{Val list|legend=1| 7, 15, 22, 59, 81bd, 140bbd }} | {{Val list|legend=1| 7, 15, 22, 59, 81bd, 140bbd }} | ||
Line 66: | Line 70: | ||
Mapping: [{{val| 1 2 3 2 4 }}, {{val| 0 -3 -5 6 -4 }}] | Mapping: [{{val| 1 2 3 2 4 }}, {{val| 0 -3 -5 6 -4 }}] | ||
POTE generator: ~ | POTE generator: ~10/9 = 162.747 | ||
Minimax tuning: | Minimax tuning: | ||
* 11-odd-limit | * 11-odd-limit: ~10/9 = {{monzo| 1/6 -1/6 0 1/12 }} | ||
: Eigenmonzos: 2, 9/7 | |||
Tuning ranges: | Tuning ranges: | ||
* | * Diamond monotone range: ~10/9 = [160.000, 163.636] (2\15 to 3\22) | ||
* | * Diamond tradeoff range: ~10/9 = [150.637, 182.404] | ||
* Diamond monotone and tradeoff: [160.000, 163.636] | * Diamond monotone and tradeoff: ~10/9 = [160.000, 163.636] | ||
Vals: {{val list| 7, 15, 22, 37, 59 }} | Vals: {{val list| 7, 15, 22, 37, 59 }} | ||
Line 87: | Line 92: | ||
Mapping: [{{val| 1 2 3 2 4 4 }}, {{val| 0 -3 -5 6 -4 -2 }}] | Mapping: [{{val| 1 2 3 2 4 4 }}, {{val| 0 -3 -5 6 -4 -2 }}] | ||
POTE generator: ~ | POTE generator: ~10/9 = 162.708 | ||
Minimax tuning: | Minimax tuning: | ||
* 13- and 15-odd-limit | * 13- and 15-odd-limit: ~10/9 = {{monzo| 1 0 0 0 -1/4 }} | ||
: Eigenmonzo: 2, 11/8 | |||
Tuning ranges: | Tuning ranges: | ||
* | * Diamond monotone range: [160.000, 163.636] (2\15 to 3\22) | ||
* | * Diamond tradeoff range: [138.573, 182.404] | ||
* Diamond monotone and tradeoff: [160.000, 163.636] | * Diamond monotone and tradeoff: [160.000, 163.636] | ||
Line 110: | Line 116: | ||
Mapping: [{{val| 1 2 3 2 4 6 }}, {{val| 0 -3 -5 6 -4 -17 }}] | Mapping: [{{val| 1 2 3 2 4 6 }}, {{val| 0 -3 -5 6 -4 -17 }}] | ||
POTE generator: ~ | POTE generator: ~10/9 = 162.277 | ||
Minimax tuning: | Minimax tuning: | ||
* 13- and 15-odd-limit | * 13- and 15-odd-limit: ~10/9 = {{monzo| 2/13 0 0 0 1/13 -1/13 }} | ||
: Eigenmonzos: 2, 13/11 | |||
Tuning ranges: | Tuning ranges: | ||
* | * Diamond monotone range: [160.000, 162.162] (2\15 to 5\37) | ||
* | * Diamond tradeoff range: [150.637, 182.404] | ||
* Diamond monotone and tradeoff: [160.000, 162.162] | * Diamond monotone and tradeoff: [160.000, 162.162] | ||
Line 131: | Line 138: | ||
Mapping: [{{val| 1 2 3 2 4 1 }}, {{val| 0 -3 -5 6 -4 20 }}] | Mapping: [{{val| 1 2 3 2 4 1 }}, {{val| 0 -3 -5 6 -4 20 }}] | ||
POTE generator: ~ | POTE generator: ~10/9 = 162.482 | ||
Minimax tuning: | Minimax tuning: | ||
* 13- and 15-odd-limit | * 13- and 15-odd-limit: ~10/9 = {{monzo| 1/14 0 0 -1/14 0 1/14 }} | ||
: Eigenmonzos: 2, 14/13 | |||
Vals: {{val list| 15f, 22f, 37 }} | Vals: {{val list| 15f, 22f, 37 }} | ||
Line 147: | Line 155: | ||
Mapping: [{{val| 1 2 3 2 4 3 }}, {{val| 0 -3 -5 6 -4 5 }}] | Mapping: [{{val| 1 2 3 2 4 3 }}, {{val| 0 -3 -5 6 -4 5 }}] | ||
POTE generator: ~ | POTE generator: ~10/9 = 163.688 | ||
Minimax tuning: | Minimax tuning: | ||
* 13- and 15-odd-limit | * 13- and 15-odd-limit: ~10/9 = {{monzo| 1/6 -1/6 0 1/12 }} | ||
: Eigenmonzos: 2, 9/7 | |||
Vals: {{val list| 7, 15f, 22 }} | Vals: {{val list| 7, 15f, 22 }} | ||
Line 167: | Line 176: | ||
{{Multival|legend=1| 3 5 1 1 -7 -12 }} | {{Multival|legend=1| 3 5 1 1 -7 -12 }} | ||
[[POTE generator]]: ~ | [[POTE generator]]: ~8/7 = 158.868 | ||
[[Minimax tuning]]: | [[Minimax tuning]]: | ||
* [[7-odd-limit|7-]] and [[9-odd-limit]] | * [[7-odd-limit|7-]] and [[9-odd-limit]]: ~8/7 = {{monzo| 3/5 0 -1/5 }} | ||
: Eigenmonzos: 2, 5/4 | |||
{{Val list|legend=1| 7, 8d, 15d }} | {{Val list|legend=1| 7, 8d, 15d }} | ||
Line 183: | Line 193: | ||
Mapping: [{{val| 1 2 3 3 4 }}, {{val| 0 -3 -5 -1 -4 }}] | Mapping: [{{val| 1 2 3 3 4 }}, {{val| 0 -3 -5 -1 -4 }}] | ||
POTE generator: ~ | POTE generator: ~8/7 = 158.750 | ||
Vals: {{val list| 7, 8d, 15d }} | Vals: {{val list| 7, 8d, 15d }} | ||
Line 201: | Line 211: | ||
[[Minimax tuning]]: | [[Minimax tuning]]: | ||
* [[7-odd-limit|7-]] and [[9-odd-limit]] | * [[7-odd-limit|7-]] and [[9-odd-limit]]: ~10/9 = {{monzo| 2/11 0 1/11 -1/11 }} | ||
: Eigenmonzos: 2, 7/5 | |||
{{Val list|legend=1| 7d, 15d, 22, 29, 51, 73c }} | {{Val list|legend=1| 7d, 15d, 22, 29, 51, 73c }} | ||
Line 214: | Line 225: | ||
Mapping: [{{val| 1 2 3 5 4 }}, {{val| 0 -3 -5 -16 -4 }}] | Mapping: [{{val| 1 2 3 5 4 }}, {{val| 0 -3 -5 -16 -4 }}] | ||
POTE generator: ~ | POTE generator: ~10/9 = 164.552 | ||
Minimax tuning: | Minimax tuning: | ||
* 11-odd-limit | * 11-odd-limit: ~10/9 = {{monzo| 2/11 0 1/11 -1/11 }} | ||
: Eigenmonzos: 2, 7/5 | |||
Vals: {{val list| 7d, 15d, 22, 29, 51, 73ce }} | Vals: {{val list| 7d, 15d, 22, 29, 51, 73ce }} | ||
Line 230: | Line 242: | ||
Mapping: [{{val| 1 2 3 5 4 3 }}, {{val| 0 -3 -5 -16 -4 5 }}] | Mapping: [{{val| 1 2 3 5 4 3 }}, {{val| 0 -3 -5 -16 -4 5 }}] | ||
POTE generator: ~ | POTE generator: ~10/9 = 164.953 | ||
Vals: {{val list| 7d, 22, 29, 51f, 80cdeff }} | Vals: {{val list| 7d, 22, 29, 51f, 80cdeff }} | ||
Line 248: | Line 260: | ||
[[Minimax tuning]]: | [[Minimax tuning]]: | ||
* [[7-odd-limit|7-]] and [[9-odd-limit]] | * [[7-odd-limit|7-]] and [[9-odd-limit]]: ~10/9 = {{monzo| 2/3 -1/3 }} | ||
: Eigenmonzos: 2, 3 | |||
{{Val list|legend=1| 7, 29, 65c, 94cd }} | {{Val list|legend=1| 7, 29, 65c, 94cd }} | ||
Line 261: | Line 274: | ||
Mapping: [{{val| 1 2 3 1 4 }}, {{val| 0 -3 -5 13 -4 }}] | Mapping: [{{val| 1 2 3 1 4 }}, {{val| 0 -3 -5 13 -4 }}] | ||
POTE generator: ~ | POTE generator: ~10/9 = 165.981 | ||
Minimax tuning: | Minimax tuning: | ||
* 11-odd-limit | * 11-odd-limit: ~10/9 = {{monzo| 2/3 -1/3 }} | ||
: Eigenmonzos: 2, 3 | |||
Vals: {{val list| 7, 29, 65ce, 94cde }} | Vals: {{val list| 7, 29, 65ce, 94cde }} | ||
Line 277: | Line 291: | ||
Mapping: [{{val| 1 2 3 1 4 3 }}, {{val| 0 -3 -5 13 -4 5 }}] | Mapping: [{{val| 1 2 3 1 4 3 }}, {{val| 0 -3 -5 13 -4 5 }}] | ||
POTE generator: ~ | POTE generator: ~10/9 = 165.974 | ||
Minimax tuning: | Minimax tuning: | ||
* 13- and 15-odd-limit | * 13- and 15-odd-limit: ~10/9 = {{monzo| 2/3 -1/3 }} | ||
: Eigenmonzos: 2, 3 | |||
Vals: {{val list| 7, 29, 65cef, 94cdef }} | Vals: {{val list| 7, 29, 65cef, 94cdef }} | ||
Line 356: | Line 371: | ||
; Music | ; Music | ||
[http://micro.soonlabel.com/22-ET/20120207-phobos-light-hedgehog14.mp3 Phobos Light] by [[Chris Vaisvil]] in Hedgehog[14] [[hedgehog14|tuned]] to | [http://micro.soonlabel.com/22-ET/20120207-phobos-light-hedgehog14.mp3 Phobos Light] by [[Chris Vaisvil]] in Hedgehog[14] [[hedgehog14|tuned]] to 22EDO. | ||
== Nautilus == | == Nautilus == | ||
Line 467: | Line 482: | ||
[[POTE generator]]: ~36/35 = 54.384 | [[POTE generator]]: ~36/35 = 54.384 | ||
{{Val list|legend=1| 22 }} | {{Val list|legend=1| 1c, 21c, 22 }} | ||
[[Badness]]: 0.115304 | [[Badness]]: 0.115304 | ||
Line 474: | Line 489: | ||
Subgroup: 2.3.5.7.11 | Subgroup: 2.3.5.7.11 | ||
Comma list: 55/54, 100/99, | Comma list: 55/54, 100/99, 352/343 | ||
Mapping: [{{val| 1 2 3 3 4 }}, {{val| 0 -9 -15 -4 -12 }}] | Mapping: [{{val| 1 2 3 3 4 }}, {{val| 0 -9 -15 -4 -12 }}] | ||
Line 480: | Line 495: | ||
POTE generator: ~36/35 = 54.376 | POTE generator: ~36/35 = 54.376 | ||
Vals: {{val list| 22 }} | Vals: {{val list| 1ce, 21ce, 22 }} | ||
Badness: 0.051319 | Badness: 0.051319 | ||
Line 493: | Line 508: | ||
POTE generator: ~36/35 = 54.665 | POTE generator: ~36/35 = 54.665 | ||
Vals: {{val list| 22 }} | Vals: {{val list| 1ce, 21cef, 22 }} | ||
Badness: 0.044739 | Badness: 0.044739 |
Revision as of 22:17, 7 June 2021
The 5-limit parent comma for the porcupine family is 250/243, the maximal diesis or porcupine comma. Its monzo is [1 -5 3⟩, and flipping that yields ⟨⟨ 3 5 1 ]] for the wedgie. This tells us the generator is a minor whole tone, the 10/9 interval, and that three of these add up to a fourth, with two more giving the minor sixth. In fact, (10/9)3 = 4/3 × 250/243, and (10/9)5 = 8/5 × (250/243)2. 3\22 is a very recommendable generator, and MOS of 7, 8 and 15 notes make for some nice scale possibilities.
Porcupine
Subgroup: 2.3.5
Comma list: 250/243
Mapping: [⟨1 2 3], ⟨0 -3 -5]]
POTE generator: ~27/25 = 163.950
- Diamond monotone range: [150.000, 171.429] (1\8 to 1\7)
- Diamond tradeoff range: [157.821, 166.015]
- Diamond monotone and tradeoff: [157.821, 166.015]
Badness: 0.030778
Extensions
The second comma of the normal comma list defines which 7-limit family member we are looking at. That means
- 64/63, the archytas comma, for septimal porcupine,
- 36/35, the septimal quarter tone, for hystrix,
- 50/49, the jubilisma, for hedgehog, and
- 49/48, the slendro diesis, for nautilus.
Septimal porcupine
Porcupine uses six of its minor tone generator steps to get to 7/4. For this to work you need a small minor tone such as 22EDO provides, and once again 3\22 is a good tuning choice, though we might pick in preference 8\59, 11\81, or 19\140 for our generator.
Subgroup: 2.3.5.7
Comma list: 64/63, 250/243
Mapping: [⟨1 2 3 2], ⟨0 -3 -5 6]]
Wedgie: ⟨⟨ 3 5 -6 1 -18 -28 ]]
POTE generator: ~10/9 = 162.880
- 7-odd-limit: ~10/9 = [3/5 0 -1/5⟩
- Eigenmonzos: 2, 5/4
- 9-odd-limit: ~10/9 = [1/6 -1/6 0 1/12⟩
- Eigenmonzos: 2, 9/7
- Diamond monotone range: ~10/9 = [160.000, 163.636] (2\15 to 3\22)
- 7-odd-limit diamond tradeoff: ~10/9 = [157.821, 166.015]
- 9-odd-limit diamond tradeoff: ~10/9 = [157.821, 182.404]
- Diamond monotone and tradeoff: ~10/9 = [160.000, 163.636]
Badness: 0.041057
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 64/63, 100/99
Mapping: [⟨1 2 3 2 4], ⟨0 -3 -5 6 -4]]
POTE generator: ~10/9 = 162.747
Minimax tuning:
- 11-odd-limit: ~10/9 = [1/6 -1/6 0 1/12⟩
- Eigenmonzos: 2, 9/7
Tuning ranges:
- Diamond monotone range: ~10/9 = [160.000, 163.636] (2\15 to 3\22)
- Diamond tradeoff range: ~10/9 = [150.637, 182.404]
- Diamond monotone and tradeoff: ~10/9 = [160.000, 163.636]
Vals: Template:Val list
Badness: 0.021562
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 40/39, 55/54, 64/63, 66/65
Mapping: [⟨1 2 3 2 4 4], ⟨0 -3 -5 6 -4 -2]]
POTE generator: ~10/9 = 162.708
Minimax tuning:
- 13- and 15-odd-limit: ~10/9 = [1 0 0 0 -1/4⟩
- Eigenmonzo: 2, 11/8
Tuning ranges:
- Diamond monotone range: [160.000, 163.636] (2\15 to 3\22)
- Diamond tradeoff range: [138.573, 182.404]
- Diamond monotone and tradeoff: [160.000, 163.636]
Vals: Template:Val list
Badness: 0.021276
Porcupinefish
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 64/63, 91/90, 100/99
Mapping: [⟨1 2 3 2 4 6], ⟨0 -3 -5 6 -4 -17]]
POTE generator: ~10/9 = 162.277
Minimax tuning:
- 13- and 15-odd-limit: ~10/9 = [2/13 0 0 0 1/13 -1/13⟩
- Eigenmonzos: 2, 13/11
Tuning ranges:
- Diamond monotone range: [160.000, 162.162] (2\15 to 5\37)
- Diamond tradeoff range: [150.637, 182.404]
- Diamond monotone and tradeoff: [160.000, 162.162]
Vals: Template:Val list
Badness: 0.025314
Pourcup
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 64/63, 100/99, 196/195
Mapping: [⟨1 2 3 2 4 1], ⟨0 -3 -5 6 -4 20]]
POTE generator: ~10/9 = 162.482
Minimax tuning:
- 13- and 15-odd-limit: ~10/9 = [1/14 0 0 -1/14 0 1/14⟩
- Eigenmonzos: 2, 14/13
Vals: Template:Val list
Badness: 0.035130
Porkpie
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 64/63, 65/63, 100/99
Mapping: [⟨1 2 3 2 4 3], ⟨0 -3 -5 6 -4 5]]
POTE generator: ~10/9 = 163.688
Minimax tuning:
- 13- and 15-odd-limit: ~10/9 = [1/6 -1/6 0 1/12⟩
- Eigenmonzos: 2, 9/7
Vals: Template:Val list
Badness: 0.026043
Hystrix
Hystrix provides a less complex avenue to the 7-limit. Unfortunately in temperaments as in life you get what you pay for, and hystrix, for which a generator of 2\15 or 9\68 can be used, is a temperament for the adventurous souls who have probably already tried 15EDO. They can try the even sharper fifth of hystrix in 68EDO and see how that suits.
Subgroup: 2.3.5.7
Comma list: 36/35, 160/147
Mapping: [⟨1 2 3 3], ⟨0 -3 -5 -1]]
Wedgie: ⟨⟨ 3 5 1 1 -7 -12 ]]
POTE generator: ~8/7 = 158.868
- 7- and 9-odd-limit: ~8/7 = [3/5 0 -1/5⟩
- Eigenmonzos: 2, 5/4
Badness: 0.044944
11-limit
Subgroup: 2.3.5.7.11
Comma list: 22/21, 36/35, 80/77
Mapping: [⟨1 2 3 3 4], ⟨0 -3 -5 -1 -4]]
POTE generator: ~8/7 = 158.750
Vals: Template:Val list
Badness: 0.026790
Porky
Subgroup: 2.3.5.7
Comma list: 225/224, 250/243
Mapping: [⟨1 2 3 5], ⟨0 -3 -5 -16]]
Wedgie: ⟨⟨ 3 5 16 1 17 23 ]]
POTE generator: ~10/9 = 164.412
- 7- and 9-odd-limit: ~10/9 = [2/11 0 1/11 -1/11⟩
- Eigenmonzos: 2, 7/5
Badness: 0.054389
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 100/99, 225/224
Mapping: [⟨1 2 3 5 4], ⟨0 -3 -5 -16 -4]]
POTE generator: ~10/9 = 164.552
Minimax tuning:
- 11-odd-limit: ~10/9 = [2/11 0 1/11 -1/11⟩
- Eigenmonzos: 2, 7/5
Vals: Template:Val list
Badness: 0.027268
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 65/64, 91/90, 100/99
Mapping: [⟨1 2 3 5 4 3], ⟨0 -3 -5 -16 -4 5]]
POTE generator: ~10/9 = 164.953
Vals: Template:Val list
Badness: 0.026543
Coendou
Subgroup: 2.3.5.7
Comma list: 250/243, 525/512
Mapping: [⟨1 2 3 1], ⟨0 -3 -5 13]]
Wedgie: ⟨⟨ 3 5 -13 1 -29 -44 ]]
POTE generator: ~10/9 = 166.041
- 7- and 9-odd-limit: ~10/9 = [2/3 -1/3⟩
- Eigenmonzos: 2, 3
Badness: 0.118344
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 100/99, 525/512
Mapping: [⟨1 2 3 1 4], ⟨0 -3 -5 13 -4]]
POTE generator: ~10/9 = 165.981
Minimax tuning:
- 11-odd-limit: ~10/9 = [2/3 -1/3⟩
- Eigenmonzos: 2, 3
Vals: Template:Val list
Badness: 0.049669
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 65/64, 100/99, 105/104
Mapping: [⟨1 2 3 1 4 3], ⟨0 -3 -5 13 -4 5]]
POTE generator: ~10/9 = 165.974
Minimax tuning:
- 13- and 15-odd-limit: ~10/9 = [2/3 -1/3⟩
- Eigenmonzos: 2, 3
Vals: Template:Val list
Badness: 0.030233
Hedgehog
Hedgehog has a period 1/2 octave and a generator which can be taken to be 9/7 instead of 10/9. It also tempers out 245/243, the sensamagic comma. 22EDO provides the obvious tuning, but if you are looking for an alternative, you could try the ⟨146 232 338 411] val with generator 10\73, or you could try 164 cents if you are fond of round numbers. The 14 note MOS gives scope for harmony while stopping well short of 22.
Subgroup: 2.3.5.7
Comma list: 50/49, 245/243
Mapping: [⟨2 1 1 2], ⟨0 3 5 5]]
Wedgie: ⟨⟨ 6 10 10 2 -1 -5 ]]
POTE generator: ~9/7 = 435.648
Badness: 0.043983
11-limit
Subgroup: 2.3.5.7.11
Comma list: 50/49, 55/54, 99/98
Mapping: [⟨2 1 1 2 4], ⟨0 3 5 5 4]]
POTE generator: ~9/7 = 435.386
Vals: Template:Val list
Badness: 0.023095
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 50/49, 55/54, 65/63, 99/98
Mapping: [⟨2 1 1 2 4 3], ⟨0 3 5 5 4 6]]
POTE generator: ~9/7 = 435.861
Vals: Template:Val list
Badness: 0.021516
Urchin
Subgroup: 2.3.5.7.11.13
Comma list: 40/39, 50/49, 55/54, 66/65
Mapping: [⟨2 1 1 2 4 6], ⟨0 3 5 5 4 2]]
POTE generator: ~9/7 = 437.078
Vals: Template:Val list
Badness: 0.025233
Hedgepig
Subgroup: 2.3.5.7.11
Comma list: 50/49, 245/243, 385/384
Mapping: [⟨2 1 1 2 12], ⟨0 3 5 5 -7]]
POTE generator: ~9/7 = 435.425
Vals: Template:Val list
Badness: 0.068406
- Music
Phobos Light by Chris Vaisvil in Hedgehog[14] tuned to 22EDO.
Nautilus
Subgroup: 2.3.5.7
Comma list: 49/48, 250/243
Mapping: [⟨1 2 3 3], ⟨0 -6 -10 -3]]
Wedgie: ⟨⟨ 6 10 3 2 -12 -21 ]]
POTE generator: ~21/20 = 82.505
Badness: 0.057420
11-limit
Subgroup: 2.3.5.7.11
Comma list: 49/48, 55/54, 245/242
Mapping: [⟨1 2 3 3 4], ⟨0 -6 -10 -3 -8]]
POTE generator: ~21/20 = 82.504
Vals: Template:Val list
Badness: 0.026023
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 49/48, 55/54, 91/90, 100/99
Mapping: [⟨1 2 3 3 4 5], ⟨0 -6 -10 -3 -8 -19]]
POTE generator: ~21/20 = 82.530
Vals: Template:Val list
Badness: 0.022285
Belauensis
Subgroup: 2.3.5.7.11.13
Comma list: 40/39, 49/48, 55/54, 66/65
Mapping: [⟨1 2 3 3 4 4], ⟨0 -6 -10 -3 -8 -4]]
POTE generator: ~21/20 = 81.759
Vals: Template:Val list
Badness: 0.029816
- Music
Nautilus Reverie by Igliashon Calvin Jones-Coolidge
Ammonite
Subgroup: 2.3.5.7
Comma list: 250/243, 686/675
Mapping: [⟨1 5 8 10], ⟨0 -9 -15 -19]]
Wedgie: ⟨⟨ 9 15 19 3 5 2 ]]
POTE generator: ~9/7 = 454.448
Badness: 0.107686
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 100/99, 686/675
Mapping: [⟨1 5 8 10 8], ⟨0 -9 -15 -19 -12]]
POTE generator: ~9/7 = 454.512
Vals: Template:Val list
Badness: 0.045694
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 91/90, 100/99, 169/168
Mapping: [⟨1 5 8 10 8 9], ⟨0 -9 -15 -19 -12 -14]]
POTE generator: ~13/10 = 454.529
Vals: Template:Val list
Badness: 0.027168
Ceratitid
Subgroup: 2.3.5.7
Comma list: 250/243, 1728/1715
Mapping: [⟨1 2 3 3], ⟨0 -9 -15 -4]]
Wedgie: ⟨⟨ 9 15 4 3 -19 -33 ]]
POTE generator: ~36/35 = 54.384
Badness: 0.115304
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 100/99, 352/343
Mapping: [⟨1 2 3 3 4], ⟨0 -9 -15 -4 -12]]
POTE generator: ~36/35 = 54.376
Vals: Template:Val list
Badness: 0.051319
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 65/63, 100/99, 352/343
Mapping: [⟨1 2 3 3 4 4], ⟨0 -9 -15 -4 -12 -7]]
POTE generator: ~36/35 = 54.665
Vals: Template:Val list
Badness: 0.044739